arXiv (Cornell University)
MIST: Multiple Instance Spatial Transformer Network
November 2018 • Baptiste Angles, Yuhe Jin, Simon Kornblith, Andrea Tagliasacchi, Kwang Moo Yi
We propose a deep network that can be trained to tackle image reconstruction and classification problems that involve detection of multiple object instances, without any supervision regarding their whereabouts. The network learns to extract the most significant top-K patches, and feeds these patches to a task-specific network -- e.g., auto-encoder or classifier -- to solve a domain specific problem. The challenge in training such a network is the non-differentiable top-K selection process. To address this issue, w…