Mitigating Disparity while Maximizing Reward: Tight Anytime Guarantee for Improving Bandits Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2023/456
We study the Improving Multi-Armed Bandit problem, where the reward obtained from an arm increases with the number of pulls it receives. This model provides an elegant abstraction for many real-world problems in domains such as education and employment, where decisions about the distribution of opportunities can affect the future capabilities of communities and the disparity between them. A decision-maker in such settings must consider the impact of her decisions on future rewards in addition to the standard objective of maximizing her cumulative reward at any time. We study the tension between two seemingly conflicting objectives in the horizon-unaware setting: a) maximizing the cumulative reward at any time and b) ensuring that arms with better long-term rewards get sufficient pulls even if they initially have low rewards. We show that, surprisingly, the two objectives are aligned with each other. Our main contribution is an anytime algorithm for the IMAB problem that achieves the best possible cumulative reward while ensuring that the arms reach their true potential given sufficient time. Our algorithm mitigates the initial disparity due to lack of opportunity and continues pulling an arm until it stops improving. We prove the optimality of our algorithm by showing that a) any algorithm for the IMAB problem, no matter how utilitarian, must suffer Omega(T) policy regret and Omega(k) competitive ratio with respect to the optimal offline policy, and b) the competitive ratio of our algorithm is O(k).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2023/456
- https://www.ijcai.org/proceedings/2023/0456.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385767737
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385767737Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2023/456Digital Object Identifier
- Title
-
Mitigating Disparity while Maximizing Reward: Tight Anytime Guarantee for Improving BanditsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Vishakha Patil, Vineet Nair, Ganesh Ghalme, Arindam KhanList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2023/456Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2023/0456.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2023/0456.pdfDirect OA link when available
- Concepts
-
Regret, Computer science, Mathematical optimization, Competitive analysis, Time horizon, Abstraction, Term (time), Operations research, Upper and lower bounds, Mathematics, Machine learning, Quantum mechanics, Epistemology, Philosophy, Physics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385767737 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2023/456 |
| ids.doi | https://doi.org/10.24963/ijcai.2023/456 |
| ids.openalex | https://openalex.org/W4385767737 |
| fwci | 0.32348904 |
| type | article |
| title | Mitigating Disparity while Maximizing Reward: Tight Anytime Guarantee for Improving Bandits |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4108 |
| biblio.first_page | 4100 |
| topics[0].id | https://openalex.org/T12101 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Advanced Bandit Algorithms Research |
| topics[1].id | https://openalex.org/T12288 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Optimization and Search Problems |
| topics[2].id | https://openalex.org/T10462 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9965999722480774 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Reinforcement Learning in Robotics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50817715 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8883039951324463 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q79895177 |
| concepts[0].display_name | Regret |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6471545696258545 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C126255220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4877243936061859 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[2].display_name | Mathematical optimization |
| concepts[3].id | https://openalex.org/C102408133 |
| concepts[3].level | 3 |
| concepts[3].score | 0.48428815603256226 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5156350 |
| concepts[3].display_name | Competitive analysis |
| concepts[4].id | https://openalex.org/C28761237 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47832489013671875 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7805321 |
| concepts[4].display_name | Time horizon |
| concepts[5].id | https://openalex.org/C124304363 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4388561248779297 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q673661 |
| concepts[5].display_name | Abstraction |
| concepts[6].id | https://openalex.org/C61797465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4319024085998535 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[6].display_name | Term (time) |
| concepts[7].id | https://openalex.org/C42475967 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36437350511550903 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[7].display_name | Operations research |
| concepts[8].id | https://openalex.org/C77553402 |
| concepts[8].level | 2 |
| concepts[8].score | 0.260246217250824 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[8].display_name | Upper and lower bounds |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2012152075767517 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.15758436918258667 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C111472728 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[12].display_name | Epistemology |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/regret |
| keywords[0].score | 0.8883039951324463 |
| keywords[0].display_name | Regret |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6471545696258545 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[2].score | 0.4877243936061859 |
| keywords[2].display_name | Mathematical optimization |
| keywords[3].id | https://openalex.org/keywords/competitive-analysis |
| keywords[3].score | 0.48428815603256226 |
| keywords[3].display_name | Competitive analysis |
| keywords[4].id | https://openalex.org/keywords/time-horizon |
| keywords[4].score | 0.47832489013671875 |
| keywords[4].display_name | Time horizon |
| keywords[5].id | https://openalex.org/keywords/abstraction |
| keywords[5].score | 0.4388561248779297 |
| keywords[5].display_name | Abstraction |
| keywords[6].id | https://openalex.org/keywords/term |
| keywords[6].score | 0.4319024085998535 |
| keywords[6].display_name | Term (time) |
| keywords[7].id | https://openalex.org/keywords/operations-research |
| keywords[7].score | 0.36437350511550903 |
| keywords[7].display_name | Operations research |
| keywords[8].id | https://openalex.org/keywords/upper-and-lower-bounds |
| keywords[8].score | 0.260246217250824 |
| keywords[8].display_name | Upper and lower bounds |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.2012152075767517 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.15758436918258667 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2023/456 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2023/0456.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2023/456 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063009170 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vishakha Patil |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59270414 |
| authorships[0].affiliations[0].raw_affiliation_string | Indian Institute of Science, Bangalore |
| authorships[0].institutions[0].id | https://openalex.org/I59270414 |
| authorships[0].institutions[0].ror | https://ror.org/04dese585 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59270414 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Science Bangalore |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vishakha Patil |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Indian Institute of Science, Bangalore |
| authorships[1].author.id | https://openalex.org/A5067928892 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-1335-5473 |
| authorships[1].author.display_name | Vineet Nair |
| authorships[1].affiliations[0].raw_affiliation_string | Arithmic Labs |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vineet Nair |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Arithmic Labs |
| authorships[2].author.id | https://openalex.org/A5068716961 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5049-4764 |
| authorships[2].author.display_name | Ganesh Ghalme |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I65181880 |
| authorships[2].affiliations[0].raw_affiliation_string | Indian Institute of Technology, Hyderabad |
| authorships[2].institutions[0].id | https://openalex.org/I65181880 |
| authorships[2].institutions[0].ror | https://ror.org/01j4v3x97 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I65181880 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Hyderabad |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ganesh Ghalme |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Indian Institute of Technology, Hyderabad |
| authorships[3].author.id | https://openalex.org/A5085907661 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7505-1687 |
| authorships[3].author.display_name | Arindam Khan |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I59270414 |
| authorships[3].affiliations[0].raw_affiliation_string | Indian Institute of Science, Bangalore |
| authorships[3].institutions[0].id | https://openalex.org/I59270414 |
| authorships[3].institutions[0].ror | https://ror.org/04dese585 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I59270414 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Science Bangalore |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Arindam Khan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Indian Institute of Science, Bangalore |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2023/0456.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mitigating Disparity while Maximizing Reward: Tight Anytime Guarantee for Improving Bandits |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12101 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Advanced Bandit Algorithms Research |
| related_works | https://openalex.org/W2971351794, https://openalex.org/W4376155396, https://openalex.org/W1947085858, https://openalex.org/W2174986909, https://openalex.org/W2527791220, https://openalex.org/W2101991911, https://openalex.org/W2155070487, https://openalex.org/W4311589891, https://openalex.org/W3123835761, https://openalex.org/W118270247 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2023/456 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2023/0456.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/456 |
| primary_location.id | doi:10.24963/ijcai.2023/456 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2023/0456.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/456 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4287328355, https://openalex.org/W3102381603, https://openalex.org/W157259654, https://openalex.org/W2949801578, https://openalex.org/W2963598119, https://openalex.org/W2530395818, https://openalex.org/W2996787464, https://openalex.org/W2077902449, https://openalex.org/W2971977212, https://openalex.org/W2101379030, https://openalex.org/W1552828154, https://openalex.org/W3093271766, https://openalex.org/W2963945346, https://openalex.org/W3043040027, https://openalex.org/W2576746119, https://openalex.org/W4297776189, https://openalex.org/W4237910115, https://openalex.org/W2100960835, https://openalex.org/W26053276, https://openalex.org/W2002733791, https://openalex.org/W4310926581, https://openalex.org/W2405916087, https://openalex.org/W2149660380, https://openalex.org/W3189150704, https://openalex.org/W2522104760, https://openalex.org/W2396394641, https://openalex.org/W3172572974 |
| referenced_works_count | 27 |
| abstract_inverted_index.A | 58 |
| abstract_inverted_index.We | 0, 87, 127, 189 |
| abstract_inverted_index.a) | 100, 199 |
| abstract_inverted_index.an | 12, 25, 143, 183 |
| abstract_inverted_index.as | 35 |
| abstract_inverted_index.at | 84, 105 |
| abstract_inverted_index.b) | 109, 227 |
| abstract_inverted_index.by | 196 |
| abstract_inverted_index.if | 121 |
| abstract_inverted_index.in | 32, 60, 73, 96 |
| abstract_inverted_index.is | 142, 234 |
| abstract_inverted_index.it | 20, 186 |
| abstract_inverted_index.no | 206 |
| abstract_inverted_index.of | 18, 44, 51, 67, 79, 178, 193, 231 |
| abstract_inverted_index.on | 70 |
| abstract_inverted_index.to | 75, 176, 221 |
| abstract_inverted_index.Our | 139, 169 |
| abstract_inverted_index.and | 37, 53, 108, 180, 215, 226 |
| abstract_inverted_index.any | 85, 106, 200 |
| abstract_inverted_index.are | 134 |
| abstract_inverted_index.arm | 13, 184 |
| abstract_inverted_index.can | 46 |
| abstract_inverted_index.due | 175 |
| abstract_inverted_index.for | 28, 146, 202 |
| abstract_inverted_index.get | 117 |
| abstract_inverted_index.her | 68, 81 |
| abstract_inverted_index.how | 208 |
| abstract_inverted_index.low | 125 |
| abstract_inverted_index.our | 194, 232 |
| abstract_inverted_index.the | 2, 8, 16, 42, 48, 54, 65, 76, 89, 97, 102, 131, 147, 152, 160, 172, 191, 203, 222, 228 |
| abstract_inverted_index.two | 92, 132 |
| abstract_inverted_index.IMAB | 148, 204 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.arms | 112, 161 |
| abstract_inverted_index.best | 153 |
| abstract_inverted_index.each | 137 |
| abstract_inverted_index.even | 120 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.have | 124 |
| abstract_inverted_index.lack | 177 |
| abstract_inverted_index.main | 140 |
| abstract_inverted_index.many | 29 |
| abstract_inverted_index.must | 63, 210 |
| abstract_inverted_index.show | 128 |
| abstract_inverted_index.such | 34, 61 |
| abstract_inverted_index.that | 111, 150, 159, 198 |
| abstract_inverted_index.they | 122 |
| abstract_inverted_index.time | 107 |
| abstract_inverted_index.true | 164 |
| abstract_inverted_index.with | 15, 113, 136, 219 |
| abstract_inverted_index.O(k). | 235 |
| abstract_inverted_index.about | 41 |
| abstract_inverted_index.given | 166 |
| abstract_inverted_index.model | 23 |
| abstract_inverted_index.prove | 190 |
| abstract_inverted_index.pulls | 19, 119 |
| abstract_inverted_index.ratio | 218, 230 |
| abstract_inverted_index.reach | 162 |
| abstract_inverted_index.stops | 187 |
| abstract_inverted_index.study | 1, 88 |
| abstract_inverted_index.that, | 129 |
| abstract_inverted_index.their | 163 |
| abstract_inverted_index.them. | 57 |
| abstract_inverted_index.time. | 86, 168 |
| abstract_inverted_index.until | 185 |
| abstract_inverted_index.where | 7, 39 |
| abstract_inverted_index.while | 157 |
| abstract_inverted_index.Bandit | 5 |
| abstract_inverted_index.affect | 47 |
| abstract_inverted_index.better | 114 |
| abstract_inverted_index.future | 49, 71 |
| abstract_inverted_index.impact | 66 |
| abstract_inverted_index.matter | 207 |
| abstract_inverted_index.number | 17 |
| abstract_inverted_index.other. | 138 |
| abstract_inverted_index.policy | 213 |
| abstract_inverted_index.regret | 214 |
| abstract_inverted_index.reward | 9, 83, 104, 156 |
| abstract_inverted_index.suffer | 211 |
| abstract_inverted_index.aligned | 135 |
| abstract_inverted_index.anytime | 144 |
| abstract_inverted_index.between | 56, 91 |
| abstract_inverted_index.domains | 33 |
| abstract_inverted_index.elegant | 26 |
| abstract_inverted_index.initial | 173 |
| abstract_inverted_index.offline | 224 |
| abstract_inverted_index.optimal | 223 |
| abstract_inverted_index.policy, | 225 |
| abstract_inverted_index.problem | 149 |
| abstract_inverted_index.pulling | 182 |
| abstract_inverted_index.respect | 220 |
| abstract_inverted_index.rewards | 72, 116 |
| abstract_inverted_index.showing | 197 |
| abstract_inverted_index.tension | 90 |
| abstract_inverted_index.Omega(T) | 212 |
| abstract_inverted_index.Omega(k) | 216 |
| abstract_inverted_index.achieves | 151 |
| abstract_inverted_index.addition | 74 |
| abstract_inverted_index.consider | 64 |
| abstract_inverted_index.ensuring | 110, 158 |
| abstract_inverted_index.obtained | 10 |
| abstract_inverted_index.possible | 154 |
| abstract_inverted_index.problem, | 6, 205 |
| abstract_inverted_index.problems | 31 |
| abstract_inverted_index.provides | 24 |
| abstract_inverted_index.rewards. | 126 |
| abstract_inverted_index.setting: | 99 |
| abstract_inverted_index.settings | 62 |
| abstract_inverted_index.standard | 77 |
| abstract_inverted_index.Improving | 3 |
| abstract_inverted_index.algorithm | 145, 170, 195, 201, 233 |
| abstract_inverted_index.continues | 181 |
| abstract_inverted_index.decisions | 40, 69 |
| abstract_inverted_index.disparity | 55, 174 |
| abstract_inverted_index.education | 36 |
| abstract_inverted_index.increases | 14 |
| abstract_inverted_index.initially | 123 |
| abstract_inverted_index.long-term | 115 |
| abstract_inverted_index.mitigates | 171 |
| abstract_inverted_index.objective | 78 |
| abstract_inverted_index.potential | 165 |
| abstract_inverted_index.receives. | 21 |
| abstract_inverted_index.seemingly | 93 |
| abstract_inverted_index.cumulative | 82, 103, 155 |
| abstract_inverted_index.improving. | 188 |
| abstract_inverted_index.maximizing | 80, 101 |
| abstract_inverted_index.objectives | 95, 133 |
| abstract_inverted_index.optimality | 192 |
| abstract_inverted_index.real-world | 30 |
| abstract_inverted_index.sufficient | 118, 167 |
| abstract_inverted_index.Multi-Armed | 4 |
| abstract_inverted_index.abstraction | 27 |
| abstract_inverted_index.communities | 52 |
| abstract_inverted_index.competitive | 217, 229 |
| abstract_inverted_index.conflicting | 94 |
| abstract_inverted_index.employment, | 38 |
| abstract_inverted_index.opportunity | 179 |
| abstract_inverted_index.capabilities | 50 |
| abstract_inverted_index.contribution | 141 |
| abstract_inverted_index.distribution | 43 |
| abstract_inverted_index.utilitarian, | 209 |
| abstract_inverted_index.opportunities | 45 |
| abstract_inverted_index.surprisingly, | 130 |
| abstract_inverted_index.decision-maker | 59 |
| abstract_inverted_index.horizon-unaware | 98 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.59888034 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |