Mitigating Out-of-Entity Errors in Named Entity Recognition: A Sentence-Level Strategy Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.08434
Many previous models of named entity recognition (NER) suffer from the problem of Out-of-Entity (OOE), i.e., the tokens in the entity mentions of the test samples have not appeared in the training samples, which hinders the achievement of satisfactory performance. To improve OOE-NER performance, in this paper, we propose a new framework, namely S+NER, which fully leverages sentence-level information. Our S+NER achieves better OOE-NER performance mainly due to the following two particular designs. 1) It first exploits the pre-trained language model's capability of understanding the target entity's sentence-level context with a template set. 2) Then, it refines the sentence-level representation based on the positive and negative templates, through a contrastive learning strategy and template pooling method, to obtain better NER results. Our extensive experiments on five benchmark datasets have demonstrated that, our S+NER outperforms some state-of-the-art OOE-NER models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.08434
- https://arxiv.org/pdf/2412.08434
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405306753
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405306753Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.08434Digital Object Identifier
- Title
-
Mitigating Out-of-Entity Errors in Named Entity Recognition: A Sentence-Level StrategyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-11Full publication date if available
- Authors
-
Guochao Jiang, Ziqin Luo, Chengwei Hu, Zepeng Ding, Deqing YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.08434Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.08434Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.08434Direct OA link when available
- Concepts
-
Named-entity recognition, Entity linking, Computer science, Sentence, Natural language processing, Artificial intelligence, Speech recognition, Engineering, Systems engineering, Knowledge base, Task (project management)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405306753 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.08434 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.08434 |
| ids.openalex | https://openalex.org/W4405306753 |
| fwci | |
| type | preprint |
| title | Mitigating Out-of-Entity Errors in Named Entity Recognition: A Sentence-Level Strategy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13629 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9797999858856201 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text Readability and Simplification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779135771 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7442044019699097 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q403574 |
| concepts[0].display_name | Named-entity recognition |
| concepts[1].id | https://openalex.org/C96711827 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6453449726104736 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17012245 |
| concepts[1].display_name | Entity linking |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6230002045631409 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2777530160 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5912595987319946 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q41796 |
| concepts[3].display_name | Sentence |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5235271453857422 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40761709213256836 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C28490314 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3685288727283478 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[6].display_name | Speech recognition |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.10877016186714172 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C201995342 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[8].display_name | Systems engineering |
| concepts[9].id | https://openalex.org/C4554734 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q593744 |
| concepts[9].display_name | Knowledge base |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| keywords[0].id | https://openalex.org/keywords/named-entity-recognition |
| keywords[0].score | 0.7442044019699097 |
| keywords[0].display_name | Named-entity recognition |
| keywords[1].id | https://openalex.org/keywords/entity-linking |
| keywords[1].score | 0.6453449726104736 |
| keywords[1].display_name | Entity linking |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6230002045631409 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/sentence |
| keywords[3].score | 0.5912595987319946 |
| keywords[3].display_name | Sentence |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.5235271453857422 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.40761709213256836 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/speech-recognition |
| keywords[6].score | 0.3685288727283478 |
| keywords[6].display_name | Speech recognition |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.10877016186714172 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.08434 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.08434 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.08434 |
| locations[1].id | doi:10.48550/arxiv.2412.08434 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.08434 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109715043 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-3415-4473 |
| authorships[0].author.display_name | Guochao Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Guochao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037234614 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ziqin Luo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luo, Ziqin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5104156897 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chengwei Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hu, Chengwei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5058865385 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zepeng Ding |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ding, Zepeng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046589466 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1958-7182 |
| authorships[4].author.display_name | Deqing Yang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yang, Deqing |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.08434 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mitigating Out-of-Entity Errors in Named Entity Recognition: A Sentence-Level Strategy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2186562580, https://openalex.org/W3198729192, https://openalex.org/W4255258373, https://openalex.org/W2593907245, https://openalex.org/W3000685722, https://openalex.org/W2520117834, https://openalex.org/W626980589, https://openalex.org/W4313162113, https://openalex.org/W1884363728, https://openalex.org/W4390279576 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.08434 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.08434 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.08434 |
| primary_location.id | pmh:oai:arXiv.org:2412.08434 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.08434 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.08434 |
| publication_date | 2024-12-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 90, 108 |
| abstract_inverted_index.1) | 73 |
| abstract_inverted_index.2) | 93 |
| abstract_inverted_index.It | 74 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.in | 18, 29, 44 |
| abstract_inverted_index.it | 95 |
| abstract_inverted_index.of | 3, 12, 22, 37, 82 |
| abstract_inverted_index.on | 101, 124 |
| abstract_inverted_index.to | 67, 116 |
| abstract_inverted_index.we | 47 |
| abstract_inverted_index.NER | 119 |
| abstract_inverted_index.Our | 59, 121 |
| abstract_inverted_index.and | 104, 112 |
| abstract_inverted_index.due | 66 |
| abstract_inverted_index.new | 50 |
| abstract_inverted_index.not | 27 |
| abstract_inverted_index.our | 131 |
| abstract_inverted_index.the | 10, 16, 19, 23, 30, 35, 68, 77, 84, 97, 102 |
| abstract_inverted_index.two | 70 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.five | 125 |
| abstract_inverted_index.from | 9 |
| abstract_inverted_index.have | 26, 128 |
| abstract_inverted_index.set. | 92 |
| abstract_inverted_index.some | 134 |
| abstract_inverted_index.test | 24 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.with | 89 |
| abstract_inverted_index.(NER) | 7 |
| abstract_inverted_index.S+NER | 60, 132 |
| abstract_inverted_index.Then, | 94 |
| abstract_inverted_index.based | 100 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.fully | 55 |
| abstract_inverted_index.i.e., | 15 |
| abstract_inverted_index.named | 4 |
| abstract_inverted_index.that, | 130 |
| abstract_inverted_index.which | 33, 54 |
| abstract_inverted_index.(OOE), | 14 |
| abstract_inverted_index.S+NER, | 53 |
| abstract_inverted_index.better | 62, 118 |
| abstract_inverted_index.entity | 5, 20 |
| abstract_inverted_index.mainly | 65 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.namely | 52 |
| abstract_inverted_index.obtain | 117 |
| abstract_inverted_index.paper, | 46 |
| abstract_inverted_index.suffer | 8 |
| abstract_inverted_index.target | 85 |
| abstract_inverted_index.tokens | 17 |
| abstract_inverted_index.OOE-NER | 42, 63, 136 |
| abstract_inverted_index.context | 88 |
| abstract_inverted_index.hinders | 34 |
| abstract_inverted_index.improve | 41 |
| abstract_inverted_index.method, | 115 |
| abstract_inverted_index.model's | 80 |
| abstract_inverted_index.models. | 137 |
| abstract_inverted_index.pooling | 114 |
| abstract_inverted_index.problem | 11 |
| abstract_inverted_index.propose | 48 |
| abstract_inverted_index.refines | 96 |
| abstract_inverted_index.samples | 25 |
| abstract_inverted_index.through | 107 |
| abstract_inverted_index.achieves | 61 |
| abstract_inverted_index.appeared | 28 |
| abstract_inverted_index.datasets | 127 |
| abstract_inverted_index.designs. | 72 |
| abstract_inverted_index.entity's | 86 |
| abstract_inverted_index.exploits | 76 |
| abstract_inverted_index.language | 79 |
| abstract_inverted_index.learning | 110 |
| abstract_inverted_index.mentions | 21 |
| abstract_inverted_index.negative | 105 |
| abstract_inverted_index.positive | 103 |
| abstract_inverted_index.previous | 1 |
| abstract_inverted_index.results. | 120 |
| abstract_inverted_index.samples, | 32 |
| abstract_inverted_index.strategy | 111 |
| abstract_inverted_index.template | 91, 113 |
| abstract_inverted_index.training | 31 |
| abstract_inverted_index.benchmark | 126 |
| abstract_inverted_index.extensive | 122 |
| abstract_inverted_index.following | 69 |
| abstract_inverted_index.leverages | 56 |
| abstract_inverted_index.capability | 81 |
| abstract_inverted_index.framework, | 51 |
| abstract_inverted_index.particular | 71 |
| abstract_inverted_index.templates, | 106 |
| abstract_inverted_index.achievement | 36 |
| abstract_inverted_index.contrastive | 109 |
| abstract_inverted_index.experiments | 123 |
| abstract_inverted_index.outperforms | 133 |
| abstract_inverted_index.performance | 64 |
| abstract_inverted_index.pre-trained | 78 |
| abstract_inverted_index.recognition | 6 |
| abstract_inverted_index.demonstrated | 129 |
| abstract_inverted_index.information. | 58 |
| abstract_inverted_index.performance, | 43 |
| abstract_inverted_index.performance. | 39 |
| abstract_inverted_index.satisfactory | 38 |
| abstract_inverted_index.Out-of-Entity | 13 |
| abstract_inverted_index.understanding | 83 |
| abstract_inverted_index.representation | 99 |
| abstract_inverted_index.sentence-level | 57, 87, 98 |
| abstract_inverted_index.state-of-the-art | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |