Mitigation of multi-scale biases in cell-type deconvolution for spatially resolved transcriptomics using HarmoDecon Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/bioinformatics/btaf451
Motivation The advent of spatially resolved transcriptomics (SRT) has revolutionized our understanding of tissue molecular microenvironments by enabling the study of gene expression in its spatial context. However, many SRT platforms lack single-cell resolution, necessitating cell-type deconvolution methods to estimate cell-type proportions in SRT spots. Despite advancements in existing tools, these methods have not addressed biases occurring at three scales: individual spots, entire tissue samples, and discrepancies between SRT and reference scRNA-seq datasets. These biases result in overbalanced cell-type proportions for each spot, mismatched cell-type fractions at the sample level, and data distribution shifts across platforms. Results To mitigate these biases, we introduce HarmoDecon, a novel semi-supervised deep learning model for spatial cell-type deconvolution. HarmoDecon leverages pseudo-spots derived from scRNA-seq data and uses Gaussian Mixture Graph Convolutional Networks to address the aforementioned issues. Through extensive simulations on multi-cell spots from STARmap and osmFISH, HarmoDecon outperformed 11 state-of-the-art methods. Additionally, when applied to legacy SRT platforms and 10x Visium datasets, HarmoDecon achieved the highest accuracy in spatial domain clustering and maintained strong correlations between cancer marker genes and cancer cells in human breast cancer samples. These results highlight the utility of HarmoDecon in advancing spatial transcriptomics analysis. Availability and implementation The HarmoDecon scripts, with the detailed tutorials, are available at https://github.com/ericcombiolab/HarmoDecon/tree/main.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bioinformatics/btaf451
- https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf451/64014885/btaf451.pdf
- OA Status
- gold
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413111454
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413111454Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bioinformatics/btaf451Digital Object Identifier
- Title
-
Mitigation of multi-scale biases in cell-type deconvolution for spatially resolved transcriptomics using HarmoDeconWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-08Full publication date if available
- Authors
-
Zirui Wang, Ke Xu, Yang Liu, Yu Xu, Lu ZhangList of authors in order
- Landing page
-
https://doi.org/10.1093/bioinformatics/btaf451Publisher landing page
- PDF URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf451/64014885/btaf451.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf451/64014885/btaf451.pdfDirect OA link when available
- Concepts
-
Deconvolution, Scale (ratio), Computer science, Data mining, Artificial intelligence, Algorithm, Cartography, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413111454 |
|---|---|
| doi | https://doi.org/10.1093/bioinformatics/btaf451 |
| ids.doi | https://doi.org/10.1093/bioinformatics/btaf451 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40796171 |
| ids.openalex | https://openalex.org/W4413111454 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D020869 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Gene Expression Profiling |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D059467 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Transcriptome |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D059010 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Single-Cell Analysis |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000077321 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Deep Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012984 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Software |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000081246 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | RNA-Seq |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D020869 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Gene Expression Profiling |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D059467 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Transcriptome |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D059010 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Single-Cell Analysis |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000077321 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Deep Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D012984 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Software |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000465 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Algorithms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000081246 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | RNA-Seq |
| type | article |
| title | Mitigation of multi-scale biases in cell-type deconvolution for spatially resolved transcriptomics using HarmoDecon |
| biblio.issue | 9 |
| biblio.volume | 41 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T11255 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Microfluidic and Bio-sensing Technologies |
| is_xpac | False |
| apc_list.value | 3618 |
| apc_list.currency | USD |
| apc_list.value_usd | 3618 |
| apc_paid.value | 3618 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3618 |
| concepts[0].id | https://openalex.org/C174576160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9195026159286499 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1183700 |
| concepts[0].display_name | Deconvolution |
| concepts[1].id | https://openalex.org/C2778755073 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7008324265480042 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[1].display_name | Scale (ratio) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6273815631866455 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3770614266395569 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34649941325187683 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.25127413868904114 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C58640448 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09906277060508728 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[6].display_name | Cartography |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.07010132074356079 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/deconvolution |
| keywords[0].score | 0.9195026159286499 |
| keywords[0].display_name | Deconvolution |
| keywords[1].id | https://openalex.org/keywords/scale |
| keywords[1].score | 0.7008324265480042 |
| keywords[1].display_name | Scale (ratio) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6273815631866455 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.3770614266395569 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.34649941325187683 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.25127413868904114 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/cartography |
| keywords[6].score | 0.09906277060508728 |
| keywords[6].display_name | Cartography |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.07010132074356079 |
| keywords[7].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1093/bioinformatics/btaf451 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52395412 |
| locations[0].source.issn | 1367-4803, 1367-4811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1367-4803 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf451/64014885/btaf451.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bioinformatics/btaf451 |
| locations[1].id | pmid:40796171 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioinformatics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40796171 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100687847 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0626-742X |
| authorships[0].author.display_name | Zirui Wang |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141568987 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[0].institutions[0].id | https://openalex.org/I141568987 |
| authorships[0].institutions[0].ror | https://ror.org/0145fw131 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141568987 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong Baptist University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zirui Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[1].author.id | https://openalex.org/A5119607059 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2587-8517 |
| authorships[1].author.display_name | Ke Xu |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141568987 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[1].institutions[0].id | https://openalex.org/I141568987 |
| authorships[1].institutions[0].ror | https://ror.org/0145fw131 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141568987 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong Baptist University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ke Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[2].author.id | https://openalex.org/A5040874137 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7650-0077 |
| authorships[2].author.display_name | Yang Liu |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141568987 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[2].institutions[0].id | https://openalex.org/I141568987 |
| authorships[2].institutions[0].ror | https://ror.org/0145fw131 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141568987 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Hong Kong Baptist University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[3].author.id | https://openalex.org/A5115595956 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-3662-4226 |
| authorships[3].author.display_name | Yu Xu |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141568987 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[3].institutions[0].id | https://openalex.org/I141568987 |
| authorships[3].institutions[0].ror | https://ror.org/0145fw131 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141568987 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Hong Kong Baptist University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yu Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[4].author.id | https://openalex.org/A5100388642 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5384-7630 |
| authorships[4].author.display_name | Lu Zhang |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141568987 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| authorships[4].institutions[0].id | https://openalex.org/I141568987 |
| authorships[4].institutions[0].ror | https://ror.org/0145fw131 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141568987 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Hong Kong Baptist University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lu Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, Hong Kong Baptist University , Kowloon Tong, Hong Kong, SAR |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf451/64014885/btaf451.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mitigation of multi-scale biases in cell-type deconvolution for spatially resolved transcriptomics using HarmoDecon |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4250106855, https://openalex.org/W2037261263, https://openalex.org/W3149087629, https://openalex.org/W4231036715, https://openalex.org/W2032074591, https://openalex.org/W1986156575, https://openalex.org/W3193619106 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1093/bioinformatics/btaf451 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52395412 |
| best_oa_location.source.issn | 1367-4803, 1367-4811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1367-4803 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf451/64014885/btaf451.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btaf451 |
| primary_location.id | doi:10.1093/bioinformatics/btaf451 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52395412 |
| primary_location.source.issn | 1367-4803, 1367-4811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1367-4803 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf451/64014885/btaf451.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btaf451 |
| publication_date | 2025-08-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3092450854, https://openalex.org/W4385987383, https://openalex.org/W3208940117, https://openalex.org/W3129476455, https://openalex.org/W2193603013, https://openalex.org/W4229033508, https://openalex.org/W4283579418, https://openalex.org/W2825016163, https://openalex.org/W3120554937, https://openalex.org/W2952383043, https://openalex.org/W4226192560, https://openalex.org/W3161009639, https://openalex.org/W3127422037, https://openalex.org/W2923300855, https://openalex.org/W4389429489, https://openalex.org/W2585424881, https://openalex.org/W3210002151, https://openalex.org/W2104635744, https://openalex.org/W2951852420, https://openalex.org/W4205817967, https://openalex.org/W4280533477, https://openalex.org/W4387583204, https://openalex.org/W4401332722, https://openalex.org/W3196495189, https://openalex.org/W4322738920, https://openalex.org/W4225272983, https://openalex.org/W2899224111, https://openalex.org/W4383340946, https://openalex.org/W4288758477, https://openalex.org/W3124439729, https://openalex.org/W2471536144, https://openalex.org/W3112563877, https://openalex.org/W2950976066, https://openalex.org/W2903487479, https://openalex.org/W2889453805, https://openalex.org/W4323320361, https://openalex.org/W3008725139, https://openalex.org/W2893593269, https://openalex.org/W2991502613, https://openalex.org/W2809368942, https://openalex.org/W1995837988, https://openalex.org/W2800392236, https://openalex.org/W2127112319, https://openalex.org/W3198511950, https://openalex.org/W4388899046, https://openalex.org/W3162218953, https://openalex.org/W4389373718, https://openalex.org/W4389246021, https://openalex.org/W2810790157, https://openalex.org/W2332292689 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 105 |
| abstract_inverted_index.11 | 146 |
| abstract_inverted_index.To | 98 |
| abstract_inverted_index.at | 58, 87, 209 |
| abstract_inverted_index.by | 17 |
| abstract_inverted_index.in | 24, 43, 48, 77, 165, 180, 192 |
| abstract_inverted_index.of | 4, 13, 21, 190 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 39, 129, 152 |
| abstract_inverted_index.we | 102 |
| abstract_inverted_index.10x | 157 |
| abstract_inverted_index.SRT | 30, 44, 69, 154 |
| abstract_inverted_index.The | 2, 200 |
| abstract_inverted_index.and | 66, 70, 91, 122, 142, 156, 169, 177, 198 |
| abstract_inverted_index.are | 207 |
| abstract_inverted_index.for | 81, 111 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.its | 25 |
| abstract_inverted_index.not | 54 |
| abstract_inverted_index.our | 11 |
| abstract_inverted_index.the | 19, 88, 131, 162, 188, 204 |
| abstract_inverted_index.data | 92, 121 |
| abstract_inverted_index.deep | 108 |
| abstract_inverted_index.each | 82 |
| abstract_inverted_index.from | 119, 140 |
| abstract_inverted_index.gene | 22 |
| abstract_inverted_index.have | 53 |
| abstract_inverted_index.lack | 32 |
| abstract_inverted_index.many | 29 |
| abstract_inverted_index.uses | 123 |
| abstract_inverted_index.when | 150 |
| abstract_inverted_index.with | 203 |
| abstract_inverted_index.(SRT) | 8 |
| abstract_inverted_index.Graph | 126 |
| abstract_inverted_index.These | 74, 185 |
| abstract_inverted_index.cells | 179 |
| abstract_inverted_index.genes | 176 |
| abstract_inverted_index.human | 181 |
| abstract_inverted_index.model | 110 |
| abstract_inverted_index.novel | 106 |
| abstract_inverted_index.spot, | 83 |
| abstract_inverted_index.spots | 139 |
| abstract_inverted_index.study | 20 |
| abstract_inverted_index.these | 51, 100 |
| abstract_inverted_index.three | 59 |
| abstract_inverted_index.Visium | 158 |
| abstract_inverted_index.across | 95 |
| abstract_inverted_index.advent | 3 |
| abstract_inverted_index.biases | 56, 75 |
| abstract_inverted_index.breast | 182 |
| abstract_inverted_index.cancer | 174, 178, 183 |
| abstract_inverted_index.domain | 167 |
| abstract_inverted_index.entire | 63 |
| abstract_inverted_index.legacy | 153 |
| abstract_inverted_index.level, | 90 |
| abstract_inverted_index.marker | 175 |
| abstract_inverted_index.result | 76 |
| abstract_inverted_index.sample | 89 |
| abstract_inverted_index.shifts | 94 |
| abstract_inverted_index.spots, | 62 |
| abstract_inverted_index.spots. | 45 |
| abstract_inverted_index.strong | 171 |
| abstract_inverted_index.tissue | 14, 64 |
| abstract_inverted_index.tools, | 50 |
| abstract_inverted_index.Despite | 46 |
| abstract_inverted_index.Mixture | 125 |
| abstract_inverted_index.Results | 97 |
| abstract_inverted_index.STARmap | 141 |
| abstract_inverted_index.Through | 134 |
| abstract_inverted_index.address | 130 |
| abstract_inverted_index.applied | 151 |
| abstract_inverted_index.between | 68, 173 |
| abstract_inverted_index.biases, | 101 |
| abstract_inverted_index.derived | 118 |
| abstract_inverted_index.highest | 163 |
| abstract_inverted_index.issues. | 133 |
| abstract_inverted_index.methods | 38, 52 |
| abstract_inverted_index.results | 186 |
| abstract_inverted_index.scales: | 60 |
| abstract_inverted_index.spatial | 26, 112, 166, 194 |
| abstract_inverted_index.utility | 189 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Gaussian | 124 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.Networks | 128 |
| abstract_inverted_index.accuracy | 164 |
| abstract_inverted_index.achieved | 161 |
| abstract_inverted_index.context. | 27 |
| abstract_inverted_index.detailed | 205 |
| abstract_inverted_index.enabling | 18 |
| abstract_inverted_index.estimate | 40 |
| abstract_inverted_index.existing | 49 |
| abstract_inverted_index.learning | 109 |
| abstract_inverted_index.methods. | 148 |
| abstract_inverted_index.mitigate | 99 |
| abstract_inverted_index.osmFISH, | 143 |
| abstract_inverted_index.resolved | 6 |
| abstract_inverted_index.samples, | 65 |
| abstract_inverted_index.samples. | 184 |
| abstract_inverted_index.scripts, | 202 |
| abstract_inverted_index.addressed | 55 |
| abstract_inverted_index.advancing | 193 |
| abstract_inverted_index.analysis. | 196 |
| abstract_inverted_index.available | 208 |
| abstract_inverted_index.cell-type | 36, 41, 79, 85, 113 |
| abstract_inverted_index.datasets, | 159 |
| abstract_inverted_index.datasets. | 73 |
| abstract_inverted_index.extensive | 135 |
| abstract_inverted_index.fractions | 86 |
| abstract_inverted_index.highlight | 187 |
| abstract_inverted_index.introduce | 103 |
| abstract_inverted_index.leverages | 116 |
| abstract_inverted_index.molecular | 15 |
| abstract_inverted_index.occurring | 57 |
| abstract_inverted_index.platforms | 31, 155 |
| abstract_inverted_index.reference | 71 |
| abstract_inverted_index.scRNA-seq | 72, 120 |
| abstract_inverted_index.spatially | 5 |
| abstract_inverted_index.HarmoDecon | 115, 144, 160, 191, 201 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.clustering | 168 |
| abstract_inverted_index.expression | 23 |
| abstract_inverted_index.individual | 61 |
| abstract_inverted_index.maintained | 170 |
| abstract_inverted_index.mismatched | 84 |
| abstract_inverted_index.multi-cell | 138 |
| abstract_inverted_index.platforms. | 96 |
| abstract_inverted_index.tutorials, | 206 |
| abstract_inverted_index.HarmoDecon, | 104 |
| abstract_inverted_index.proportions | 42, 80 |
| abstract_inverted_index.resolution, | 34 |
| abstract_inverted_index.simulations | 136 |
| abstract_inverted_index.single-cell | 33 |
| abstract_inverted_index.Availability | 197 |
| abstract_inverted_index.advancements | 47 |
| abstract_inverted_index.correlations | 172 |
| abstract_inverted_index.distribution | 93 |
| abstract_inverted_index.outperformed | 145 |
| abstract_inverted_index.overbalanced | 78 |
| abstract_inverted_index.pseudo-spots | 117 |
| abstract_inverted_index.Additionally, | 149 |
| abstract_inverted_index.Convolutional | 127 |
| abstract_inverted_index.deconvolution | 37 |
| abstract_inverted_index.discrepancies | 67 |
| abstract_inverted_index.necessitating | 35 |
| abstract_inverted_index.understanding | 12 |
| abstract_inverted_index.aforementioned | 132 |
| abstract_inverted_index.deconvolution. | 114 |
| abstract_inverted_index.implementation | 199 |
| abstract_inverted_index.revolutionized | 10 |
| abstract_inverted_index.semi-supervised | 107 |
| abstract_inverted_index.transcriptomics | 7, 195 |
| abstract_inverted_index.state-of-the-art | 147 |
| abstract_inverted_index.microenvironments | 16 |
| abstract_inverted_index.https://github.com/ericcombiolab/HarmoDecon/tree/main. | 210 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.32126822 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |