Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2003.07329
This paper studies the problem of post-hoc calibration of machine learning classifiers. We introduce the following desiderata for uncertainty calibration: (a) accuracy-preserving, (b) data-efficient, and (c) high expressive power. We show that none of the existing methods satisfy all three requirements, and demonstrate how Mix-n-Match calibration strategies (i.e., ensemble and composition) can help achieve remarkably better data-efficiency and expressive power while provably maintaining the classification accuracy of the original classifier. Mix-n-Match strategies are generic in the sense that they can be used to improve the performance of any off-the-shelf calibrator. We also reveal potential issues in standard evaluation practices. Popular approaches (e.g., histogram-based expected calibration error (ECE)) may provide misleading results especially in small-data regime. Therefore, we propose an alternative data-efficient kernel density-based estimator for a reliable evaluation of the calibration performance and prove its asymptotically unbiasedness and consistency. Our approaches outperform state-of-the-art solutions on both the calibration as well as the evaluation tasks in most of the experimental settings. Our codes are available at https://github.com/zhang64-llnl/Mix-n-Match-Calibration.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2003.07329
- https://arxiv.org/pdf/2003.07329
- OA Status
- green
- Cited By
- 18
- References
- 60
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3012254281
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3012254281Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2003.07329Digital Object Identifier
- Title
-
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-16Full publication date if available
- Authors
-
Jize Zhang, Bhavya Kailkhura, T. Yong-Jin HanList of authors in order
- Landing page
-
https://arxiv.org/abs/2003.07329Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2003.07329Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2003.07329Direct OA link when available
- Concepts
-
Computer science, Calibration, Estimator, Classifier (UML), Consistency (knowledge bases), Artificial intelligence, Ensemble learning, Machine learning, Kernel (algebra), Kernel density estimation, Data mining, Algorithm, Mathematics, Statistics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 5, 2023: 6, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3012254281 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2003.07329 |
| ids.doi | https://doi.org/10.13140/rg.2.2.11390.13125 |
| ids.mag | 3012254281 |
| ids.openalex | https://openalex.org/W3012254281 |
| fwci | |
| type | preprint |
| title | Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7540490031242371 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C165838908 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6742526292800903 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[1].display_name | Calibration |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6580667495727539 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6490291953086853 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C2776436953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5802461504936218 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[4].display_name | Consistency (knowledge bases) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5609021782875061 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C45942800 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5459851026535034 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[6].display_name | Ensemble learning |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.538190484046936 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C74193536 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5020632743835449 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[8].display_name | Kernel (algebra) |
| concepts[9].id | https://openalex.org/C71134354 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42263728380203247 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q458825 |
| concepts[9].display_name | Kernel density estimation |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3550563156604767 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34745126962661743 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.17354261875152588 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.15381574630737305 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7540490031242371 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/calibration |
| keywords[1].score | 0.6742526292800903 |
| keywords[1].display_name | Calibration |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.6580667495727539 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.6490291953086853 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/consistency |
| keywords[4].score | 0.5802461504936218 |
| keywords[4].display_name | Consistency (knowledge bases) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5609021782875061 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/ensemble-learning |
| keywords[6].score | 0.5459851026535034 |
| keywords[6].display_name | Ensemble learning |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.538190484046936 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/kernel |
| keywords[8].score | 0.5020632743835449 |
| keywords[8].display_name | Kernel (algebra) |
| keywords[9].id | https://openalex.org/keywords/kernel-density-estimation |
| keywords[9].score | 0.42263728380203247 |
| keywords[9].display_name | Kernel density estimation |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3550563156604767 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.34745126962661743 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.17354261875152588 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.15381574630737305 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2003.07329 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2003.07329 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2003.07329 |
| locations[1].id | mag:3012254281 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://export.arxiv.org/pdf/2003.07329 |
| locations[2].id | pmh:oai:repository.ust.hk:1783.1-114852 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401796 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Rare & Special e-Zone (The Hong Kong University of Science and Technology) |
| locations[2].source.host_organization | https://openalex.org/I200769079 |
| locations[2].source.host_organization_name | Hong Kong University of Science and Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I200769079 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Conference paper |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://repository.ust.hk/ir/Record/1783.1-114852 |
| locations[3].id | doi:10.48550/arxiv.2003.07329 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2003.07329 |
| locations[4].id | doi:10.13140/rg.2.2.11390.13125 |
| locations[4].is_oa | True |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article-journal |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.13140/rg.2.2.11390.13125 |
| locations[5].id | doi:10.13140/rg.2.2.35717.09446 |
| locations[5].is_oa | True |
| locations[5].source | |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | |
| locations[5].raw_type | article-journal |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://doi.org/10.13140/rg.2.2.35717.09446 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5060905917 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0553-3979 |
| authorships[0].author.display_name | Jize Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1282311441 |
| authorships[0].affiliations[0].raw_affiliation_string | Lawrence livermore National Laboratory |
| authorships[0].institutions[0].id | https://openalex.org/I1282311441 |
| authorships[0].institutions[0].ror | https://ror.org/041nk4h53 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1282311441, https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210138311 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Lawrence Livermore National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jize Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Lawrence livermore National Laboratory |
| authorships[1].author.id | https://openalex.org/A5041470575 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2819-2919 |
| authorships[1].author.display_name | Bhavya Kailkhura |
| authorships[1].affiliations[0].raw_affiliation_string | [LLNL] |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bhavya Kailkhura |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | [LLNL] |
| authorships[2].author.id | https://openalex.org/A5067913179 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3000-2782 |
| authorships[2].author.display_name | T. Yong-Jin Han |
| authorships[2].affiliations[0].raw_affiliation_string | [LLNL] |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | T. Yong-Jin Han |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | [LLNL] |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2003.07329 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W3034905393, https://openalex.org/W3160682370, https://openalex.org/W3151462836, https://openalex.org/W3093783084, https://openalex.org/W3043270561, https://openalex.org/W3161659397, https://openalex.org/W3003515589, https://openalex.org/W3170741396, https://openalex.org/W3132872899, https://openalex.org/W3156734410, https://openalex.org/W3135261467, https://openalex.org/W3014066851, https://openalex.org/W3042818515, https://openalex.org/W94418491, https://openalex.org/W2216589588, https://openalex.org/W3004511681, https://openalex.org/W3187828479, https://openalex.org/W3190398575, https://openalex.org/W2986991093, https://openalex.org/W2767029637 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 6 |
| best_oa_location.id | pmh:oai:arXiv.org:2003.07329 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2003.07329 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2003.07329 |
| primary_location.id | pmh:oai:arXiv.org:2003.07329 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2003.07329 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2003.07329 |
| publication_date | 2020-03-16 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2963036823, https://openalex.org/W2963540279, https://openalex.org/W2023943903, https://openalex.org/W2964137095, https://openalex.org/W2592929672, https://openalex.org/W2989661724, https://openalex.org/W2078128010, https://openalex.org/W2969338701, https://openalex.org/W2164411961, https://openalex.org/W2963446712, https://openalex.org/W3102204725, https://openalex.org/W2581377246, https://openalex.org/W2108598243, https://openalex.org/W3011253634, https://openalex.org/W2995464762, https://openalex.org/W2963995504, https://openalex.org/W3118608800, https://openalex.org/W2962746458, https://openalex.org/W2804697534, https://openalex.org/W2119112357, https://openalex.org/W2254249950, https://openalex.org/W2600383743, https://openalex.org/W2982509564, https://openalex.org/W3034403194, https://openalex.org/W2194775991, https://openalex.org/W2014268383, https://openalex.org/W2133777675, https://openalex.org/W3037275730, https://openalex.org/W2129606454, https://openalex.org/W2118020555, https://openalex.org/W2971130081, https://openalex.org/W2970971581, https://openalex.org/W2917792182, https://openalex.org/W2963238274, https://openalex.org/W2183341477, https://openalex.org/W2012942264, https://openalex.org/W2964059111, https://openalex.org/W2904981516, https://openalex.org/W2047634553, https://openalex.org/W1536680647, https://openalex.org/W2970206392, https://openalex.org/W1484867920, https://openalex.org/W2970404282, https://openalex.org/W1618905105, https://openalex.org/W2773235741, https://openalex.org/W2025720061, https://openalex.org/W1977245551, https://openalex.org/W2963881189, https://openalex.org/W2267551766, https://openalex.org/W2963441669, https://openalex.org/W2016511206, https://openalex.org/W1511694993, https://openalex.org/W2098824882, https://openalex.org/W2964212410, https://openalex.org/W2112796928, https://openalex.org/W1969596714, https://openalex.org/W1932198206, https://openalex.org/W2971118045, https://openalex.org/W2990037398, https://openalex.org/W204885769 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 125 |
| abstract_inverted_index.We | 12, 29, 90 |
| abstract_inverted_index.an | 118 |
| abstract_inverted_index.as | 148, 150 |
| abstract_inverted_index.at | 164 |
| abstract_inverted_index.be | 80 |
| abstract_inverted_index.in | 74, 95, 112, 154 |
| abstract_inverted_index.of | 5, 8, 33, 66, 86, 128, 156 |
| abstract_inverted_index.on | 144 |
| abstract_inverted_index.to | 82 |
| abstract_inverted_index.we | 116 |
| abstract_inverted_index.(a) | 20 |
| abstract_inverted_index.(b) | 22 |
| abstract_inverted_index.(c) | 25 |
| abstract_inverted_index.Our | 139, 160 |
| abstract_inverted_index.all | 38 |
| abstract_inverted_index.and | 24, 41, 49, 57, 132, 137 |
| abstract_inverted_index.any | 87 |
| abstract_inverted_index.are | 72, 162 |
| abstract_inverted_index.can | 51, 79 |
| abstract_inverted_index.for | 17, 124 |
| abstract_inverted_index.how | 43 |
| abstract_inverted_index.its | 134 |
| abstract_inverted_index.may | 107 |
| abstract_inverted_index.the | 3, 14, 34, 63, 67, 75, 84, 129, 146, 151, 157 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 91 |
| abstract_inverted_index.both | 145 |
| abstract_inverted_index.help | 52 |
| abstract_inverted_index.high | 26 |
| abstract_inverted_index.most | 155 |
| abstract_inverted_index.none | 32 |
| abstract_inverted_index.show | 30 |
| abstract_inverted_index.that | 31, 77 |
| abstract_inverted_index.they | 78 |
| abstract_inverted_index.used | 81 |
| abstract_inverted_index.well | 149 |
| abstract_inverted_index.codes | 161 |
| abstract_inverted_index.error | 105 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.power | 59 |
| abstract_inverted_index.prove | 133 |
| abstract_inverted_index.sense | 76 |
| abstract_inverted_index.tasks | 153 |
| abstract_inverted_index.three | 39 |
| abstract_inverted_index.while | 60 |
| abstract_inverted_index.(ECE)) | 106 |
| abstract_inverted_index.(e.g., | 101 |
| abstract_inverted_index.(i.e., | 47 |
| abstract_inverted_index.better | 55 |
| abstract_inverted_index.issues | 94 |
| abstract_inverted_index.kernel | 121 |
| abstract_inverted_index.power. | 28 |
| abstract_inverted_index.reveal | 92 |
| abstract_inverted_index.Popular | 99 |
| abstract_inverted_index.achieve | 53 |
| abstract_inverted_index.generic | 73 |
| abstract_inverted_index.improve | 83 |
| abstract_inverted_index.machine | 9 |
| abstract_inverted_index.methods | 36 |
| abstract_inverted_index.problem | 4 |
| abstract_inverted_index.propose | 117 |
| abstract_inverted_index.provide | 108 |
| abstract_inverted_index.regime. | 114 |
| abstract_inverted_index.results | 110 |
| abstract_inverted_index.satisfy | 37 |
| abstract_inverted_index.studies | 2 |
| abstract_inverted_index.accuracy | 65 |
| abstract_inverted_index.ensemble | 48 |
| abstract_inverted_index.existing | 35 |
| abstract_inverted_index.expected | 103 |
| abstract_inverted_index.learning | 10 |
| abstract_inverted_index.original | 68 |
| abstract_inverted_index.post-hoc | 6 |
| abstract_inverted_index.provably | 61 |
| abstract_inverted_index.reliable | 126 |
| abstract_inverted_index.standard | 96 |
| abstract_inverted_index.available | 163 |
| abstract_inverted_index.estimator | 123 |
| abstract_inverted_index.following | 15 |
| abstract_inverted_index.introduce | 13 |
| abstract_inverted_index.potential | 93 |
| abstract_inverted_index.settings. | 159 |
| abstract_inverted_index.solutions | 143 |
| abstract_inverted_index.Therefore, | 115 |
| abstract_inverted_index.approaches | 100, 140 |
| abstract_inverted_index.desiderata | 16 |
| abstract_inverted_index.especially | 111 |
| abstract_inverted_index.evaluation | 97, 127, 152 |
| abstract_inverted_index.expressive | 27, 58 |
| abstract_inverted_index.misleading | 109 |
| abstract_inverted_index.outperform | 141 |
| abstract_inverted_index.practices. | 98 |
| abstract_inverted_index.remarkably | 54 |
| abstract_inverted_index.small-data | 113 |
| abstract_inverted_index.strategies | 46, 71 |
| abstract_inverted_index.Mix-n-Match | 44, 70 |
| abstract_inverted_index.alternative | 119 |
| abstract_inverted_index.calibration | 7, 45, 104, 130, 147 |
| abstract_inverted_index.calibrator. | 89 |
| abstract_inverted_index.classifier. | 69 |
| abstract_inverted_index.demonstrate | 42 |
| abstract_inverted_index.maintaining | 62 |
| abstract_inverted_index.performance | 85, 131 |
| abstract_inverted_index.uncertainty | 18 |
| abstract_inverted_index.calibration: | 19 |
| abstract_inverted_index.classifiers. | 11 |
| abstract_inverted_index.composition) | 50 |
| abstract_inverted_index.consistency. | 138 |
| abstract_inverted_index.experimental | 158 |
| abstract_inverted_index.unbiasedness | 136 |
| abstract_inverted_index.density-based | 122 |
| abstract_inverted_index.off-the-shelf | 88 |
| abstract_inverted_index.requirements, | 40 |
| abstract_inverted_index.asymptotically | 135 |
| abstract_inverted_index.classification | 64 |
| abstract_inverted_index.data-efficient | 120 |
| abstract_inverted_index.data-efficiency | 56 |
| abstract_inverted_index.data-efficient, | 23 |
| abstract_inverted_index.histogram-based | 102 |
| abstract_inverted_index.state-of-the-art | 142 |
| abstract_inverted_index.accuracy-preserving, | 21 |
| abstract_inverted_index.https://github.com/zhang64-llnl/Mix-n-Match-Calibration. | 165 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |