Mixture of Low Rank Adaptation with Partial Parameter Sharing for Time Series Forecasting Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.17872
Multi-task forecasting has become the standard approach for time-series forecasting (TSF). However, we show that it suffers from an Expressiveness Bottleneck, where predictions at different time steps share the same representation, leading to unavoidable errors even with optimal representations. To address this issue, we propose a two-stage framework: first, pre-train a foundation model for one-step-ahead prediction; then, adapt it using step-specific LoRA modules.This design enables the foundation model to handle any number of forecast steps while avoiding the expressiveness bottleneck. We further introduce the Mixture-of-LoRA (MoLA) model, which employs adaptively weighted LoRA experts to achieve partial parameter sharing across steps. This approach enhances both efficiency and forecasting performance by exploiting interdependencies between forecast steps. Experiments show that MoLA significantly improves model expressiveness and outperforms state-of-the-art time-series forecasting methods. Code is available at https://anonymous.4open.science/r/MoLA-BC92.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.17872
- https://arxiv.org/pdf/2505.17872
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414580819
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414580819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.17872Digital Object Identifier
- Title
-
Mixture of Low Rank Adaptation with Partial Parameter Sharing for Time Series ForecastingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-23Full publication date if available
- Authors
-
Linfeng Pan, Zhichao Chen, Haoxuan Li, Guangyi Liu, Zhijian Xu, Zhiqiang Liu, Hao Wang, Ying WeiList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.17872Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.17872Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.17872Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414580819 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.17872 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.17872 |
| ids.openalex | https://openalex.org/W4414580819 |
| fwci | |
| type | preprint |
| title | Mixture of Low Rank Adaptation with Partial Parameter Sharing for Time Series Forecasting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9451000094413757 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T11918 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9090999960899353 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Forecasting Techniques and Applications |
| topics[2].id | https://openalex.org/T11326 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9072999954223633 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.17872 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.17872 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.17872 |
| locations[1].id | doi:10.48550/arxiv.2505.17872 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.17872 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102995307 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0398-7333 |
| authorships[0].author.display_name | Linfeng Pan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pan, Licheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100619476 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8431-6066 |
| authorships[1].author.display_name | Zhichao Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Zhichao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100629474 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3903-7364 |
| authorships[2].author.display_name | Haoxuan Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Haoxuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100737328 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9822-2039 |
| authorships[3].author.display_name | Guangyi Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Guangyi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100512419 |
| authorships[4].author.orcid | https://orcid.org/0009-0006-0527-1442 |
| authorships[4].author.display_name | Zhijian Xu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xu, Zhijian |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100730557 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8752-5755 |
| authorships[5].author.display_name | Zhiqiang Liu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liu, Zhaoran |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5116592778 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2227-075X |
| authorships[6].author.display_name | Hao Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wang, Hao |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100619276 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4247-1770 |
| authorships[7].author.display_name | Ying Wei |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wei, Ying |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.17872 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mixture of Low Rank Adaptation with Partial Parameter Sharing for Time Series Forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9451000094413757 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.17872 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.17872 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.17872 |
| primary_location.id | pmh:oai:arXiv.org:2505.17872 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.17872 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.17872 |
| publication_date | 2025-05-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 45, 50 |
| abstract_inverted_index.To | 39 |
| abstract_inverted_index.We | 80 |
| abstract_inverted_index.an | 18 |
| abstract_inverted_index.at | 23, 131 |
| abstract_inverted_index.by | 108 |
| abstract_inverted_index.is | 129 |
| abstract_inverted_index.it | 15, 58 |
| abstract_inverted_index.of | 72 |
| abstract_inverted_index.to | 32, 68, 93 |
| abstract_inverted_index.we | 12, 43 |
| abstract_inverted_index.and | 105, 122 |
| abstract_inverted_index.any | 70 |
| abstract_inverted_index.for | 7, 53 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.the | 4, 28, 65, 77, 83 |
| abstract_inverted_index.Code | 128 |
| abstract_inverted_index.LoRA | 61, 91 |
| abstract_inverted_index.MoLA | 117 |
| abstract_inverted_index.This | 100 |
| abstract_inverted_index.both | 103 |
| abstract_inverted_index.even | 35 |
| abstract_inverted_index.from | 17 |
| abstract_inverted_index.same | 29 |
| abstract_inverted_index.show | 13, 115 |
| abstract_inverted_index.that | 14, 116 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.time | 25 |
| abstract_inverted_index.with | 36 |
| abstract_inverted_index.adapt | 57 |
| abstract_inverted_index.model | 52, 67, 120 |
| abstract_inverted_index.share | 27 |
| abstract_inverted_index.steps | 26, 74 |
| abstract_inverted_index.then, | 56 |
| abstract_inverted_index.using | 59 |
| abstract_inverted_index.where | 21 |
| abstract_inverted_index.which | 87 |
| abstract_inverted_index.while | 75 |
| abstract_inverted_index.(MoLA) | 85 |
| abstract_inverted_index.(TSF). | 10 |
| abstract_inverted_index.across | 98 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.design | 63 |
| abstract_inverted_index.errors | 34 |
| abstract_inverted_index.first, | 48 |
| abstract_inverted_index.handle | 69 |
| abstract_inverted_index.issue, | 42 |
| abstract_inverted_index.model, | 86 |
| abstract_inverted_index.number | 71 |
| abstract_inverted_index.steps. | 99, 113 |
| abstract_inverted_index.achieve | 94 |
| abstract_inverted_index.address | 40 |
| abstract_inverted_index.between | 111 |
| abstract_inverted_index.employs | 88 |
| abstract_inverted_index.enables | 64 |
| abstract_inverted_index.experts | 92 |
| abstract_inverted_index.further | 81 |
| abstract_inverted_index.leading | 31 |
| abstract_inverted_index.optimal | 37 |
| abstract_inverted_index.partial | 95 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.sharing | 97 |
| abstract_inverted_index.suffers | 16 |
| abstract_inverted_index.However, | 11 |
| abstract_inverted_index.approach | 6, 101 |
| abstract_inverted_index.avoiding | 76 |
| abstract_inverted_index.enhances | 102 |
| abstract_inverted_index.forecast | 73, 112 |
| abstract_inverted_index.improves | 119 |
| abstract_inverted_index.methods. | 127 |
| abstract_inverted_index.standard | 5 |
| abstract_inverted_index.weighted | 90 |
| abstract_inverted_index.available | 130 |
| abstract_inverted_index.different | 24 |
| abstract_inverted_index.introduce | 82 |
| abstract_inverted_index.parameter | 96 |
| abstract_inverted_index.pre-train | 49 |
| abstract_inverted_index.two-stage | 46 |
| abstract_inverted_index.Multi-task | 0 |
| abstract_inverted_index.adaptively | 89 |
| abstract_inverted_index.efficiency | 104 |
| abstract_inverted_index.exploiting | 109 |
| abstract_inverted_index.foundation | 51, 66 |
| abstract_inverted_index.framework: | 47 |
| abstract_inverted_index.Bottleneck, | 20 |
| abstract_inverted_index.Experiments | 114 |
| abstract_inverted_index.bottleneck. | 79 |
| abstract_inverted_index.forecasting | 1, 9, 106, 126 |
| abstract_inverted_index.outperforms | 123 |
| abstract_inverted_index.performance | 107 |
| abstract_inverted_index.prediction; | 55 |
| abstract_inverted_index.predictions | 22 |
| abstract_inverted_index.time-series | 8, 125 |
| abstract_inverted_index.unavoidable | 33 |
| abstract_inverted_index.modules.This | 62 |
| abstract_inverted_index.significantly | 118 |
| abstract_inverted_index.step-specific | 60 |
| abstract_inverted_index.Expressiveness | 19 |
| abstract_inverted_index.expressiveness | 78, 121 |
| abstract_inverted_index.one-step-ahead | 54 |
| abstract_inverted_index.Mixture-of-LoRA | 84 |
| abstract_inverted_index.representation, | 30 |
| abstract_inverted_index.representations. | 38 |
| abstract_inverted_index.state-of-the-art | 124 |
| abstract_inverted_index.interdependencies | 110 |
| abstract_inverted_index.https://anonymous.4open.science/r/MoLA-BC92. | 132 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |