Mixture of neural fields for heterogeneous reconstruction in cryo-EM Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.09420
Cryo-electron microscopy (cryo-EM) is an experimental technique for protein structure determination that images an ensemble of macromolecules in near-physiological contexts. While recent advances enable the reconstruction of dynamic conformations of a single biomolecular complex, current methods do not adequately model samples with mixed conformational and compositional heterogeneity. In particular, datasets containing mixtures of multiple proteins require the joint inference of structure, pose, compositional class, and conformational states for 3D reconstruction. Here, we present Hydra, an approach that models both conformational and compositional heterogeneity fully ab initio by parameterizing structures as arising from one of K neural fields. We employ a new likelihood-based loss function and demonstrate the effectiveness of our approach on synthetic datasets composed of mixtures of proteins with large degrees of conformational variability. We additionally demonstrate Hydra on an experimental dataset of a cellular lysate containing a mixture of different protein complexes. Hydra expands the expressivity of heterogeneous reconstruction methods and thus broadens the scope of cryo-EM to increasingly complex samples.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.09420
- https://arxiv.org/pdf/2412.09420
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405355287
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405355287Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.09420Digital Object Identifier
- Title
-
Mixture of neural fields for heterogeneous reconstruction in cryo-EMWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-12Full publication date if available
- Authors
-
Axel Levy, Rishwanth Raghu, David Shustin, Anjie Peng, Huan Li, Oliver B. Clarke, Gordon Wetzstein, Ellen D. ZhongList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.09420Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.09420Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.09420Direct OA link when available
- Concepts
-
Artificial neural network, Computer science, Artificial intelligence, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405355287 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.09420 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.09420 |
| ids.openalex | https://openalex.org/W4405355287 |
| fwci | |
| type | preprint |
| title | Mixture of neural fields for heterogeneous reconstruction in cryo-EM |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11965 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9049000144004822 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3107 |
| topics[0].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[0].display_name | Quantum, superfluid, helium dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.45286130905151367 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.44539809226989746 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4244338870048523 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.37583601474761963 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.45286130905151367 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.44539809226989746 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4244338870048523 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.37583601474761963 |
| keywords[3].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.09420 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.09420 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.09420 |
| locations[1].id | doi:10.48550/arxiv.2412.09420 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.09420 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032272248 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7890-9562 |
| authorships[0].author.display_name | Axel Levy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Levy, Axel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5093538906 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Rishwanth Raghu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Raghu, Rishwanth |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5092229457 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | David Shustin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shustin, David |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5014092332 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9287-7536 |
| authorships[3].author.display_name | Anjie Peng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Peng, Adele Rui-Yang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100319225 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1286-6552 |
| authorships[4].author.display_name | Huan Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Huan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5046511507 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1876-196X |
| authorships[5].author.display_name | Oliver B. Clarke |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Clarke, Oliver Biggs |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5014044649 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9243-6885 |
| authorships[6].author.display_name | Gordon Wetzstein |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wetzstein, Gordon |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5036218344 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6345-1907 |
| authorships[7].author.display_name | Ellen D. Zhong |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Zhong, Ellen D. |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.09420 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mixture of neural fields for heterogeneous reconstruction in cryo-EM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11965 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9049000144004822 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3107 |
| primary_topic.subfield.display_name | Atomic and Molecular Physics, and Optics |
| primary_topic.display_name | Quantum, superfluid, helium dynamics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.09420 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.09420 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.09420 |
| primary_location.id | pmh:oai:arXiv.org:2412.09420 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.09420 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.09420 |
| publication_date | 2024-12-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.K | 94 |
| abstract_inverted_index.a | 30, 99, 134, 138 |
| abstract_inverted_index.3D | 68 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.We | 97, 125 |
| abstract_inverted_index.ab | 84 |
| abstract_inverted_index.an | 4, 13, 74, 130 |
| abstract_inverted_index.as | 89 |
| abstract_inverted_index.by | 86 |
| abstract_inverted_index.do | 36 |
| abstract_inverted_index.in | 17 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 15, 26, 29, 52, 59, 93, 108, 115, 117, 122, 133, 140, 148, 157 |
| abstract_inverted_index.on | 111, 129 |
| abstract_inverted_index.to | 159 |
| abstract_inverted_index.we | 71 |
| abstract_inverted_index.and | 44, 64, 80, 104, 152 |
| abstract_inverted_index.for | 7, 67 |
| abstract_inverted_index.new | 100 |
| abstract_inverted_index.not | 37 |
| abstract_inverted_index.one | 92 |
| abstract_inverted_index.our | 109 |
| abstract_inverted_index.the | 24, 56, 106, 146, 155 |
| abstract_inverted_index.both | 78 |
| abstract_inverted_index.from | 91 |
| abstract_inverted_index.loss | 102 |
| abstract_inverted_index.that | 11, 76 |
| abstract_inverted_index.thus | 153 |
| abstract_inverted_index.with | 41, 119 |
| abstract_inverted_index.Here, | 70 |
| abstract_inverted_index.Hydra | 128, 144 |
| abstract_inverted_index.While | 20 |
| abstract_inverted_index.fully | 83 |
| abstract_inverted_index.joint | 57 |
| abstract_inverted_index.large | 120 |
| abstract_inverted_index.mixed | 42 |
| abstract_inverted_index.model | 39 |
| abstract_inverted_index.pose, | 61 |
| abstract_inverted_index.scope | 156 |
| abstract_inverted_index.Hydra, | 73 |
| abstract_inverted_index.class, | 63 |
| abstract_inverted_index.employ | 98 |
| abstract_inverted_index.enable | 23 |
| abstract_inverted_index.images | 12 |
| abstract_inverted_index.initio | 85 |
| abstract_inverted_index.lysate | 136 |
| abstract_inverted_index.models | 77 |
| abstract_inverted_index.neural | 95 |
| abstract_inverted_index.recent | 21 |
| abstract_inverted_index.single | 31 |
| abstract_inverted_index.states | 66 |
| abstract_inverted_index.arising | 90 |
| abstract_inverted_index.complex | 161 |
| abstract_inverted_index.cryo-EM | 158 |
| abstract_inverted_index.current | 34 |
| abstract_inverted_index.dataset | 132 |
| abstract_inverted_index.degrees | 121 |
| abstract_inverted_index.dynamic | 27 |
| abstract_inverted_index.expands | 145 |
| abstract_inverted_index.fields. | 96 |
| abstract_inverted_index.methods | 35, 151 |
| abstract_inverted_index.mixture | 139 |
| abstract_inverted_index.present | 72 |
| abstract_inverted_index.protein | 8, 142 |
| abstract_inverted_index.require | 55 |
| abstract_inverted_index.samples | 40 |
| abstract_inverted_index.advances | 22 |
| abstract_inverted_index.approach | 75, 110 |
| abstract_inverted_index.broadens | 154 |
| abstract_inverted_index.cellular | 135 |
| abstract_inverted_index.complex, | 33 |
| abstract_inverted_index.composed | 114 |
| abstract_inverted_index.datasets | 49, 113 |
| abstract_inverted_index.ensemble | 14 |
| abstract_inverted_index.function | 103 |
| abstract_inverted_index.mixtures | 51, 116 |
| abstract_inverted_index.multiple | 53 |
| abstract_inverted_index.proteins | 54, 118 |
| abstract_inverted_index.samples. | 162 |
| abstract_inverted_index.(cryo-EM) | 2 |
| abstract_inverted_index.contexts. | 19 |
| abstract_inverted_index.different | 141 |
| abstract_inverted_index.inference | 58 |
| abstract_inverted_index.structure | 9 |
| abstract_inverted_index.synthetic | 112 |
| abstract_inverted_index.technique | 6 |
| abstract_inverted_index.adequately | 38 |
| abstract_inverted_index.complexes. | 143 |
| abstract_inverted_index.containing | 50, 137 |
| abstract_inverted_index.microscopy | 1 |
| abstract_inverted_index.structure, | 60 |
| abstract_inverted_index.structures | 88 |
| abstract_inverted_index.demonstrate | 105, 127 |
| abstract_inverted_index.particular, | 48 |
| abstract_inverted_index.additionally | 126 |
| abstract_inverted_index.biomolecular | 32 |
| abstract_inverted_index.experimental | 5, 131 |
| abstract_inverted_index.expressivity | 147 |
| abstract_inverted_index.increasingly | 160 |
| abstract_inverted_index.variability. | 124 |
| abstract_inverted_index.Cryo-electron | 0 |
| abstract_inverted_index.compositional | 45, 62, 81 |
| abstract_inverted_index.conformations | 28 |
| abstract_inverted_index.determination | 10 |
| abstract_inverted_index.effectiveness | 107 |
| abstract_inverted_index.heterogeneity | 82 |
| abstract_inverted_index.heterogeneous | 149 |
| abstract_inverted_index.conformational | 43, 65, 79, 123 |
| abstract_inverted_index.heterogeneity. | 46 |
| abstract_inverted_index.macromolecules | 16 |
| abstract_inverted_index.parameterizing | 87 |
| abstract_inverted_index.reconstruction | 25, 150 |
| abstract_inverted_index.reconstruction. | 69 |
| abstract_inverted_index.likelihood-based | 101 |
| abstract_inverted_index.near-physiological | 18 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |