MLAAN: Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary Network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v39i21.34428
Deep neural networks (DNNs) typically employ an end-to-end (E2E) training paradigm which presents several challenges, including high GPU memory consumption, inefficiency, and difficulties in model parallelization during training. Recent research has sought to address these issues, with one promising approach being local learning. This method involves partitioning the backbone network into gradient-isolated modules and manually designing auxiliary networks to train these local modules. Existing methods often neglect the interaction of information between local modules, leading to myopic issues and a performance gap compared to E2E training. To address these limitations, we propose the Multilaminar Leap Augmented Auxiliary Network (MLAAN). Specifically, MLAAN comprises Multilaminar Local Modules (MLM) and Leap Augmented Modules (LAM). MLM captures both local and global features through independent and cascaded auxiliary networks, alleviating performance issues caused by insufficient global features. However, overly simplistic auxiliary networks can impede MLM's ability to capture global information. To address this, we further design LAM, an enhanced auxiliary network that uses the Exponential Moving Average (EMA) method to facilitate information exchange between local modules, thereby mitigating the shortsightedness resulting from inadequate interaction. The synergy between MLM and LAM has demonstrated excellent performance. Our experiments on the CIFAR-10, STL-10, SVHN, and ImageNet datasets show that MLAAN can be seamlessly integrated into existing local learning frameworks, significantly enhancing their performance and even surpassing end-to-end (E2E) training methods, while also reducing GPU memory consumption.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v39i21.34428
- https://ojs.aaai.org/index.php/AAAI/article/download/34428/36583
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409363258
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409363258Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v39i21.34428Digital Object Identifier
- Title
-
MLAAN: Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-11Full publication date if available
- Authors
-
Yuming Zhang, Shouxin Zhang, Peizhe Wang, Feiyu Zhu, Dongzhi Guan, Junhao Su, Jiabin Liu, Changpeng CaiList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v39i21.34428Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/34428/36583Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/34428/36583Direct OA link when available
- Concepts
-
Scaling, Computer science, Artificial intelligence, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409363258 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v39i21.34428 |
| ids.doi | https://doi.org/10.1609/aaai.v39i21.34428 |
| ids.openalex | https://openalex.org/W4409363258 |
| fwci | 0.0 |
| type | article |
| title | MLAAN: Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary Network |
| biblio.issue | 21 |
| biblio.volume | 39 |
| biblio.last_page | 22694 |
| biblio.first_page | 22686 |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8105999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8004000186920166 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C99844830 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6847906112670898 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[0].display_name | Scaling |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4667285680770874 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4364296793937683 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.1617635190486908 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C2524010 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[4].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/scaling |
| keywords[0].score | 0.6847906112670898 |
| keywords[0].display_name | Scaling |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4667285680770874 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4364296793937683 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.1617635190486908 |
| keywords[3].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1609/aaai.v39i21.34428 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/34428/36583 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v39i21.34428 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101435876 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8206-7457 |
| authorships[0].author.display_name | Yuming Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuming Zhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5050321672 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5396-0393 |
| authorships[1].author.display_name | Shouxin Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shouxin Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063742204 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4298-2471 |
| authorships[2].author.display_name | Peizhe Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peizhe Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025907387 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9971-1667 |
| authorships[3].author.display_name | Feiyu Zhu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Feiyu Zhu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5114189702 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Dongzhi Guan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dongzhi Guan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5109737760 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Junhao Su |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Junhao Su |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100659171 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6914-8941 |
| authorships[6].author.display_name | Jiabin Liu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jiabin Liu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5102782423 |
| authorships[7].author.orcid | https://orcid.org/0009-0007-1600-0784 |
| authorships[7].author.display_name | Changpeng Cai |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Changpeng Cai |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/34428/36583 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MLAAN: Scaling Supervised Local Learning with Multilaminar Leap Augmented Auxiliary Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8105999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v39i21.34428 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/34428/36583 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v39i21.34428 |
| primary_location.id | doi:10.1609/aaai.v39i21.34428 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/34428/36583 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v39i21.34428 |
| publication_date | 2025-04-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 79 |
| abstract_inverted_index.To | 86, 145 |
| abstract_inverted_index.an | 6, 152 |
| abstract_inverted_index.be | 203 |
| abstract_inverted_index.by | 128 |
| abstract_inverted_index.in | 23 |
| abstract_inverted_index.of | 69 |
| abstract_inverted_index.on | 191 |
| abstract_inverted_index.to | 32, 58, 75, 83, 141, 164 |
| abstract_inverted_index.we | 90, 148 |
| abstract_inverted_index.E2E | 84 |
| abstract_inverted_index.GPU | 17, 225 |
| abstract_inverted_index.LAM | 184 |
| abstract_inverted_index.MLM | 111, 182 |
| abstract_inverted_index.Our | 189 |
| abstract_inverted_index.The | 179 |
| abstract_inverted_index.and | 21, 53, 78, 106, 115, 120, 183, 196, 215 |
| abstract_inverted_index.can | 137, 202 |
| abstract_inverted_index.gap | 81 |
| abstract_inverted_index.has | 30, 185 |
| abstract_inverted_index.one | 37 |
| abstract_inverted_index.the | 47, 67, 92, 158, 173, 192 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.LAM, | 151 |
| abstract_inverted_index.Leap | 94, 107 |
| abstract_inverted_index.This | 43 |
| abstract_inverted_index.also | 223 |
| abstract_inverted_index.both | 113 |
| abstract_inverted_index.even | 216 |
| abstract_inverted_index.from | 176 |
| abstract_inverted_index.high | 16 |
| abstract_inverted_index.into | 50, 206 |
| abstract_inverted_index.show | 199 |
| abstract_inverted_index.that | 156, 200 |
| abstract_inverted_index.uses | 157 |
| abstract_inverted_index.with | 36 |
| abstract_inverted_index.(E2E) | 8, 219 |
| abstract_inverted_index.(EMA) | 162 |
| abstract_inverted_index.(MLM) | 105 |
| abstract_inverted_index.Local | 103 |
| abstract_inverted_index.MLAAN | 100, 201 |
| abstract_inverted_index.MLM's | 139 |
| abstract_inverted_index.SVHN, | 195 |
| abstract_inverted_index.being | 40 |
| abstract_inverted_index.local | 41, 61, 72, 114, 169, 208 |
| abstract_inverted_index.model | 24 |
| abstract_inverted_index.often | 65 |
| abstract_inverted_index.their | 213 |
| abstract_inverted_index.these | 34, 60, 88 |
| abstract_inverted_index.this, | 147 |
| abstract_inverted_index.train | 59 |
| abstract_inverted_index.which | 11 |
| abstract_inverted_index.while | 222 |
| abstract_inverted_index.(DNNs) | 3 |
| abstract_inverted_index.(LAM). | 110 |
| abstract_inverted_index.Moving | 160 |
| abstract_inverted_index.Recent | 28 |
| abstract_inverted_index.caused | 127 |
| abstract_inverted_index.design | 150 |
| abstract_inverted_index.during | 26 |
| abstract_inverted_index.employ | 5 |
| abstract_inverted_index.global | 116, 130, 143 |
| abstract_inverted_index.impede | 138 |
| abstract_inverted_index.issues | 77, 126 |
| abstract_inverted_index.memory | 18, 226 |
| abstract_inverted_index.method | 44, 163 |
| abstract_inverted_index.myopic | 76 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.overly | 133 |
| abstract_inverted_index.sought | 31 |
| abstract_inverted_index.Average | 161 |
| abstract_inverted_index.Modules | 104, 109 |
| abstract_inverted_index.Network | 97 |
| abstract_inverted_index.STL-10, | 194 |
| abstract_inverted_index.ability | 140 |
| abstract_inverted_index.address | 33, 87, 146 |
| abstract_inverted_index.between | 71, 168, 181 |
| abstract_inverted_index.capture | 142 |
| abstract_inverted_index.further | 149 |
| abstract_inverted_index.issues, | 35 |
| abstract_inverted_index.leading | 74 |
| abstract_inverted_index.methods | 64 |
| abstract_inverted_index.modules | 52 |
| abstract_inverted_index.neglect | 66 |
| abstract_inverted_index.network | 49, 155 |
| abstract_inverted_index.propose | 91 |
| abstract_inverted_index.several | 13 |
| abstract_inverted_index.synergy | 180 |
| abstract_inverted_index.thereby | 171 |
| abstract_inverted_index.through | 118 |
| abstract_inverted_index.(MLAAN). | 98 |
| abstract_inverted_index.Existing | 63 |
| abstract_inverted_index.However, | 132 |
| abstract_inverted_index.ImageNet | 197 |
| abstract_inverted_index.approach | 39 |
| abstract_inverted_index.backbone | 48 |
| abstract_inverted_index.captures | 112 |
| abstract_inverted_index.cascaded | 121 |
| abstract_inverted_index.compared | 82 |
| abstract_inverted_index.datasets | 198 |
| abstract_inverted_index.enhanced | 153 |
| abstract_inverted_index.exchange | 167 |
| abstract_inverted_index.existing | 207 |
| abstract_inverted_index.features | 117 |
| abstract_inverted_index.involves | 45 |
| abstract_inverted_index.learning | 209 |
| abstract_inverted_index.manually | 54 |
| abstract_inverted_index.methods, | 221 |
| abstract_inverted_index.modules, | 73, 170 |
| abstract_inverted_index.modules. | 62 |
| abstract_inverted_index.networks | 2, 57, 136 |
| abstract_inverted_index.paradigm | 10 |
| abstract_inverted_index.presents | 12 |
| abstract_inverted_index.reducing | 224 |
| abstract_inverted_index.research | 29 |
| abstract_inverted_index.training | 9, 220 |
| abstract_inverted_index.Augmented | 95, 108 |
| abstract_inverted_index.Auxiliary | 96 |
| abstract_inverted_index.CIFAR-10, | 193 |
| abstract_inverted_index.auxiliary | 56, 122, 135, 154 |
| abstract_inverted_index.comprises | 101 |
| abstract_inverted_index.designing | 55 |
| abstract_inverted_index.enhancing | 212 |
| abstract_inverted_index.excellent | 187 |
| abstract_inverted_index.features. | 131 |
| abstract_inverted_index.including | 15 |
| abstract_inverted_index.learning. | 42 |
| abstract_inverted_index.networks, | 123 |
| abstract_inverted_index.promising | 38 |
| abstract_inverted_index.resulting | 175 |
| abstract_inverted_index.training. | 27, 85 |
| abstract_inverted_index.typically | 4 |
| abstract_inverted_index.end-to-end | 7, 218 |
| abstract_inverted_index.facilitate | 165 |
| abstract_inverted_index.inadequate | 177 |
| abstract_inverted_index.integrated | 205 |
| abstract_inverted_index.mitigating | 172 |
| abstract_inverted_index.seamlessly | 204 |
| abstract_inverted_index.simplistic | 134 |
| abstract_inverted_index.surpassing | 217 |
| abstract_inverted_index.Exponential | 159 |
| abstract_inverted_index.alleviating | 124 |
| abstract_inverted_index.challenges, | 14 |
| abstract_inverted_index.experiments | 190 |
| abstract_inverted_index.frameworks, | 210 |
| abstract_inverted_index.independent | 119 |
| abstract_inverted_index.information | 70, 166 |
| abstract_inverted_index.interaction | 68 |
| abstract_inverted_index.performance | 80, 125, 214 |
| abstract_inverted_index.Multilaminar | 93, 102 |
| abstract_inverted_index.consumption, | 19 |
| abstract_inverted_index.consumption. | 227 |
| abstract_inverted_index.demonstrated | 186 |
| abstract_inverted_index.difficulties | 22 |
| abstract_inverted_index.information. | 144 |
| abstract_inverted_index.insufficient | 129 |
| abstract_inverted_index.interaction. | 178 |
| abstract_inverted_index.limitations, | 89 |
| abstract_inverted_index.partitioning | 46 |
| abstract_inverted_index.performance. | 188 |
| abstract_inverted_index.Specifically, | 99 |
| abstract_inverted_index.inefficiency, | 20 |
| abstract_inverted_index.significantly | 211 |
| abstract_inverted_index.parallelization | 25 |
| abstract_inverted_index.shortsightedness | 174 |
| abstract_inverted_index.gradient-isolated | 51 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.12515803 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |