MLAU-Net: Deep supervised attention and hybrid loss strategies for enhanced segmentation of low-resolution kidney ultrasound Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1177/20552076241291306
Objective The precise segmentation of kidneys from a 2D ultrasound (US) image is crucial for diagnosing and monitoring kidney diseases. However, achieving detailed segmentation is difficult due to US images’ low signal-to-noise ratio and low-contrast object boundaries. Methods This paper presents an approach called deep supervised attention with multi-loss functions (MLAU-Net) for US segmentation. The MLAU-Net model combines the benefits of attention mechanisms and deep supervision to improve segmentation accuracy. The attention mechanism allows the model to selectively focus on relevant regions of the kidney and ignore irrelevant background information, while the deep supervision captures the high-dimensional structure of the kidney in US images. Results We conducted experiments on two datasets to evaluate the MLAU-Net model's performance. The Wuerzburg Dynamic Kidney Ultrasound (WD-KUS) dataset with annotation contained kidney US images from 176 patients split into training and testing sets totaling 44,880. The Open Kidney Dataset’s second dataset has over 500 B-mode abdominal US images. The proposed approach achieved the highest dice, accuracy, specificity, Hausdorff distance (HD95), recall, and Average Symmetric Surface Distance (ASSD) scores of 90.2%, 98.26%, 98.93%, 8.90 mm, 91.78%, and 2.87 mm, respectively, upon testing and comparison with state-of-the-art U-Net series segmentation frameworks, which demonstrates the potential clinical value of our work. Conclusion The proposed MLAU-Net model has the potential to be applied to other medical image segmentation tasks that face similar challenges of low signal-to-noise ratios and low-contrast object boundaries.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1177/20552076241291306
- OA Status
- gold
- Cited By
- 4
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404487053
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404487053Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1177/20552076241291306Digital Object Identifier
- Title
-
MLAU-Net: Deep supervised attention and hybrid loss strategies for enhanced segmentation of low-resolution kidney ultrasoundWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Rashid Khan, Asim Zaman, Chao Chen, Chuda Xiao, Wen Zhong, Yang Liu, Haseeb Hassan, Liyilei Su, Weiguo Xie, Yan Kang, Bingding HuangList of authors in order
- Landing page
-
https://doi.org/10.1177/20552076241291306Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1177/20552076241291306Direct OA link when available
- Concepts
-
Segmentation, Artificial intelligence, Computer science, Pattern recognition (psychology), Hausdorff distance, Noise (video), Deep learning, Computer vision, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404487053 |
|---|---|
| doi | https://doi.org/10.1177/20552076241291306 |
| ids.doi | https://doi.org/10.1177/20552076241291306 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39559387 |
| ids.openalex | https://openalex.org/W4404487053 |
| fwci | 2.12063024 |
| type | article |
| title | MLAU-Net: Deep supervised attention and hybrid loss strategies for enhanced segmentation of low-resolution kidney ultrasound |
| awards[0].id | https://openalex.org/G7425530313 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 82100805 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | 20552076241291306 |
| biblio.first_page | 20552076241291306 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9713000059127808 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T10552 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9663000106811523 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2730 |
| topics[2].subfield.display_name | Oncology |
| topics[2].display_name | Colorectal Cancer Screening and Detection |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | USD |
| apc_list.value_usd | 1500 |
| apc_paid.value | 1500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1500 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8348529934883118 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7217104434967041 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.692291259765625 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.487984836101532 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C141898687 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4731786549091339 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1501997 |
| concepts[4].display_name | Hausdorff distance |
| concepts[5].id | https://openalex.org/C99498987 |
| concepts[5].level | 3 |
| concepts[5].score | 0.45852982997894287 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[5].display_name | Noise (video) |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42897799611091614 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.341593861579895 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.33497685194015503 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.8348529934883118 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7217104434967041 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.692291259765625 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.487984836101532 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/hausdorff-distance |
| keywords[4].score | 0.4731786549091339 |
| keywords[4].display_name | Hausdorff distance |
| keywords[5].id | https://openalex.org/keywords/noise |
| keywords[5].score | 0.45852982997894287 |
| keywords[5].display_name | Noise (video) |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.42897799611091614 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.341593861579895 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.33497685194015503 |
| keywords[8].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1177/20552076241291306 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188408 |
| locations[0].source.issn | 2055-2076 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2055-2076 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Digital Health |
| locations[0].source.host_organization | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_name | SAGE Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_lineage_names | SAGE Publishing |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | DIGITAL HEALTH |
| locations[0].landing_page_url | https://doi.org/10.1177/20552076241291306 |
| locations[1].id | pmid:39559387 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Digital health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39559387 |
| locations[2].id | pmh:oai:doaj.org/article:d1d7c2034a114ad3b3c7b09c06796bfe |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Digital Health, Vol 10 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/d1d7c2034a114ad3b3c7b09c06796bfe |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11571257 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Digit Health |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11571257 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5078898508 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2410-044X |
| authorships[0].author.display_name | Rashid Khan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210152380 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Applied Sciences, Shenzhen University, Shenzhen, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[2].raw_affiliation_string | Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210152380 |
| authorships[0].institutions[0].ror | https://ror.org/04qzpec27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210152380 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenzhen Technology University |
| authorships[0].institutions[1].id | https://openalex.org/I180726961 |
| authorships[0].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shenzhen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rashid Khan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Applied Sciences, Shenzhen University, Shenzhen, China, College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China |
| authorships[1].author.id | https://openalex.org/A5076096665 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7723-3684 |
| authorships[1].author.display_name | Asim Zaman |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210152380 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210152380 |
| authorships[1].institutions[0].ror | https://ror.org/04qzpec27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210152380 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Technology University |
| authorships[1].institutions[1].id | https://openalex.org/I180726961 |
| authorships[1].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shenzhen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Asim Zaman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China |
| authorships[2].author.id | https://openalex.org/A5114911427 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4649-4061 |
| authorships[2].author.display_name | Chao Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210152380 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[2].affiliations[1].raw_affiliation_string | College of Applied Sciences, Shenzhen University, Shenzhen, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210152380 |
| authorships[2].institutions[0].ror | https://ror.org/04qzpec27 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210152380 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen Technology University |
| authorships[2].institutions[1].id | https://openalex.org/I180726961 |
| authorships[2].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Shenzhen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chao Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Applied Sciences, Shenzhen University, Shenzhen, China, College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China |
| authorships[3].author.id | https://openalex.org/A5082163310 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chuda Xiao |
| authorships[3].affiliations[0].raw_affiliation_string | Wuerzburg Dynamics Inc., Shenzhen, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chuda Xiao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Wuerzburg Dynamics Inc., Shenzhen, China |
| authorships[4].author.id | https://openalex.org/A5103095867 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0540-7195 |
| authorships[4].author.display_name | Wen Zhong |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210098361, https://openalex.org/I92039509 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210098361 |
| authorships[4].institutions[0].ror | https://ror.org/00z0j0d77 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210098361 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | First Affiliated Hospital of Guangzhou Medical University |
| authorships[4].institutions[1].id | https://openalex.org/I92039509 |
| authorships[4].institutions[1].ror | https://ror.org/00zat6v61 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I92039509 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Guangzhou Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wen Zhong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China |
| authorships[5].author.id | https://openalex.org/A5100356239 |
| authorships[5].author.orcid | https://orcid.org/0009-0007-9978-0842 |
| authorships[5].author.display_name | Yang Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210098361, https://openalex.org/I92039509 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210098361 |
| authorships[5].institutions[0].ror | https://ror.org/00z0j0d77 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210098361 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | First Affiliated Hospital of Guangzhou Medical University |
| authorships[5].institutions[1].id | https://openalex.org/I92039509 |
| authorships[5].institutions[1].ror | https://ror.org/00zat6v61 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I92039509 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Guangzhou Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yang Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China |
| authorships[6].author.id | https://openalex.org/A5019879524 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8158-2502 |
| authorships[6].author.display_name | Haseeb Hassan |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210152380 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210152380 |
| authorships[6].institutions[0].ror | https://ror.org/04qzpec27 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210152380 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Shenzhen Technology University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Haseeb Hassan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China |
| authorships[7].author.id | https://openalex.org/A5069589370 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1828-9215 |
| authorships[7].author.display_name | Liyilei Su |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210152380 |
| authorships[7].affiliations[0].raw_affiliation_string | College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[7].affiliations[1].raw_affiliation_string | College of Applied Sciences, Shenzhen University, Shenzhen, China |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I180726961 |
| authorships[7].affiliations[2].raw_affiliation_string | Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210152380 |
| authorships[7].institutions[0].ror | https://ror.org/04qzpec27 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210152380 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Shenzhen Technology University |
| authorships[7].institutions[1].id | https://openalex.org/I180726961 |
| authorships[7].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Shenzhen University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Liyilei Su |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | College of Applied Sciences, Shenzhen University, Shenzhen, China, College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China |
| authorships[8].author.id | https://openalex.org/A5036392701 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8351-8934 |
| authorships[8].author.display_name | Weiguo Xie |
| authorships[8].affiliations[0].raw_affiliation_string | Wuerzburg Dynamics Inc., Shenzhen, China |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Weiguo Xie |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Wuerzburg Dynamics Inc., Shenzhen, China |
| authorships[9].author.id | https://openalex.org/A5102007923 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-2476-4921 |
| authorships[9].author.display_name | Yan Kang |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[9].affiliations[0].raw_affiliation_string | College of Applied Sciences, Shenzhen University, Shenzhen, China |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I4210152380 |
| authorships[9].affiliations[1].raw_affiliation_string | College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China |
| authorships[9].institutions[0].id | https://openalex.org/I4210152380 |
| authorships[9].institutions[0].ror | https://ror.org/04qzpec27 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210152380 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Shenzhen Technology University |
| authorships[9].institutions[1].id | https://openalex.org/I180726961 |
| authorships[9].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[9].institutions[1].country_code | CN |
| authorships[9].institutions[1].display_name | Shenzhen University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yan Kang |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | College of Applied Sciences, Shenzhen University, Shenzhen, China, College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China |
| authorships[10].author.id | https://openalex.org/A5015878061 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-4748-2882 |
| authorships[10].author.display_name | Bingding Huang |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210152380 |
| authorships[10].affiliations[0].raw_affiliation_string | College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China |
| authorships[10].institutions[0].id | https://openalex.org/I4210152380 |
| authorships[10].institutions[0].ror | https://ror.org/04qzpec27 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I4210152380 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Shenzhen Technology University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Bingding Huang |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1177/20552076241291306 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MLAU-Net: Deep supervised attention and hybrid loss strategies for enhanced segmentation of low-resolution kidney ultrasound |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2136359393, https://openalex.org/W3125779006, https://openalex.org/W4383558899, https://openalex.org/W1942697116, https://openalex.org/W4383558898, https://openalex.org/W4285299496, https://openalex.org/W4375867731, https://openalex.org/W3197673523, https://openalex.org/W3047746737, https://openalex.org/W4287691568 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1177/20552076241291306 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188408 |
| best_oa_location.source.issn | 2055-2076 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2055-2076 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Digital Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_name | SAGE Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_lineage_names | SAGE Publishing |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | DIGITAL HEALTH |
| best_oa_location.landing_page_url | https://doi.org/10.1177/20552076241291306 |
| primary_location.id | doi:10.1177/20552076241291306 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188408 |
| primary_location.source.issn | 2055-2076 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2055-2076 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Digital Health |
| primary_location.source.host_organization | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_name | SAGE Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_lineage_names | SAGE Publishing |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | DIGITAL HEALTH |
| primary_location.landing_page_url | https://doi.org/10.1177/20552076241291306 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4322724513, https://openalex.org/W2985868371, https://openalex.org/W2119249988, https://openalex.org/W4293079939, https://openalex.org/W3122230257, https://openalex.org/W2947263797, https://openalex.org/W2907760128, https://openalex.org/W2408095914, https://openalex.org/W1991851539, https://openalex.org/W2123410556, https://openalex.org/W1994527887, https://openalex.org/W4205961457, https://openalex.org/W1901129140, https://openalex.org/W2565639579, https://openalex.org/W3013198566, https://openalex.org/W2964309882, https://openalex.org/W2963881378, https://openalex.org/W4296260519, https://openalex.org/W4308951074, https://openalex.org/W4386561400, https://openalex.org/W3017153481, https://openalex.org/W3205331568, https://openalex.org/W4294975193, https://openalex.org/W2907750714, https://openalex.org/W4200488790, https://openalex.org/W2964227007, https://openalex.org/W2899465276, https://openalex.org/W2980039210, https://openalex.org/W2972093541, https://openalex.org/W4367314704, https://openalex.org/W4310595042, https://openalex.org/W4214935340, https://openalex.org/W4313550258, https://openalex.org/W3135022261, https://openalex.org/W3044261867, https://openalex.org/W4362602094, https://openalex.org/W4367281899, https://openalex.org/W4290715807, https://openalex.org/W4214627683, https://openalex.org/W4206827682, https://openalex.org/W4385346076, https://openalex.org/W4353055444, https://openalex.org/W4387225163, https://openalex.org/W3139826151, https://openalex.org/W2735039185, https://openalex.org/W3183202665, https://openalex.org/W1903029394, https://openalex.org/W4321232185, https://openalex.org/W3105636206 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 7 |
| abstract_inverted_index.2D | 8 |
| abstract_inverted_index.US | 28, 52, 102, 128, 152 |
| abstract_inverted_index.We | 105 |
| abstract_inverted_index.an | 41 |
| abstract_inverted_index.be | 213 |
| abstract_inverted_index.in | 101 |
| abstract_inverted_index.is | 12, 24 |
| abstract_inverted_index.of | 4, 60, 82, 98, 174, 201, 225 |
| abstract_inverted_index.on | 79, 108 |
| abstract_inverted_index.to | 27, 66, 76, 111, 212, 215 |
| abstract_inverted_index.176 | 131 |
| abstract_inverted_index.500 | 149 |
| abstract_inverted_index.The | 1, 54, 70, 117, 141, 154, 205 |
| abstract_inverted_index.and | 16, 33, 63, 85, 136, 167, 181, 187, 229 |
| abstract_inverted_index.due | 26 |
| abstract_inverted_index.for | 14, 51 |
| abstract_inverted_index.has | 147, 209 |
| abstract_inverted_index.low | 30, 226 |
| abstract_inverted_index.mm, | 179, 183 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.the | 58, 74, 83, 91, 95, 99, 113, 158, 197, 210 |
| abstract_inverted_index.two | 109 |
| abstract_inverted_index.(US) | 10 |
| abstract_inverted_index.2.87 | 182 |
| abstract_inverted_index.8.90 | 178 |
| abstract_inverted_index.Open | 142 |
| abstract_inverted_index.This | 38 |
| abstract_inverted_index.deep | 44, 64, 92 |
| abstract_inverted_index.face | 222 |
| abstract_inverted_index.from | 6, 130 |
| abstract_inverted_index.into | 134 |
| abstract_inverted_index.over | 148 |
| abstract_inverted_index.sets | 138 |
| abstract_inverted_index.that | 221 |
| abstract_inverted_index.upon | 185 |
| abstract_inverted_index.with | 47, 124, 189 |
| abstract_inverted_index.U-Net | 191 |
| abstract_inverted_index.dice, | 160 |
| abstract_inverted_index.focus | 78 |
| abstract_inverted_index.image | 11, 218 |
| abstract_inverted_index.model | 56, 75, 208 |
| abstract_inverted_index.other | 216 |
| abstract_inverted_index.paper | 39 |
| abstract_inverted_index.ratio | 32 |
| abstract_inverted_index.split | 133 |
| abstract_inverted_index.tasks | 220 |
| abstract_inverted_index.value | 200 |
| abstract_inverted_index.which | 195 |
| abstract_inverted_index.while | 90 |
| abstract_inverted_index.work. | 203 |
| abstract_inverted_index.(ASSD) | 172 |
| abstract_inverted_index.90.2%, | 175 |
| abstract_inverted_index.B-mode | 150 |
| abstract_inverted_index.Kidney | 120, 143 |
| abstract_inverted_index.allows | 73 |
| abstract_inverted_index.called | 43 |
| abstract_inverted_index.ignore | 86 |
| abstract_inverted_index.images | 129 |
| abstract_inverted_index.kidney | 18, 84, 100, 127 |
| abstract_inverted_index.object | 35, 231 |
| abstract_inverted_index.ratios | 228 |
| abstract_inverted_index.scores | 173 |
| abstract_inverted_index.second | 145 |
| abstract_inverted_index.series | 192 |
| abstract_inverted_index.(HD95), | 165 |
| abstract_inverted_index.44,880. | 140 |
| abstract_inverted_index.91.78%, | 180 |
| abstract_inverted_index.98.26%, | 176 |
| abstract_inverted_index.98.93%, | 177 |
| abstract_inverted_index.Average | 168 |
| abstract_inverted_index.Dynamic | 119 |
| abstract_inverted_index.Methods | 37 |
| abstract_inverted_index.Results | 104 |
| abstract_inverted_index.Surface | 170 |
| abstract_inverted_index.applied | 214 |
| abstract_inverted_index.crucial | 13 |
| abstract_inverted_index.dataset | 123, 146 |
| abstract_inverted_index.highest | 159 |
| abstract_inverted_index.images. | 103, 153 |
| abstract_inverted_index.improve | 67 |
| abstract_inverted_index.kidneys | 5 |
| abstract_inverted_index.medical | 217 |
| abstract_inverted_index.model's | 115 |
| abstract_inverted_index.precise | 2 |
| abstract_inverted_index.recall, | 166 |
| abstract_inverted_index.regions | 81 |
| abstract_inverted_index.similar | 223 |
| abstract_inverted_index.testing | 137, 186 |
| abstract_inverted_index.(WD-KUS) | 122 |
| abstract_inverted_index.Distance | 171 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.MLAU-Net | 55, 114, 207 |
| abstract_inverted_index.achieved | 157 |
| abstract_inverted_index.approach | 42, 156 |
| abstract_inverted_index.benefits | 59 |
| abstract_inverted_index.captures | 94 |
| abstract_inverted_index.clinical | 199 |
| abstract_inverted_index.combines | 57 |
| abstract_inverted_index.datasets | 110 |
| abstract_inverted_index.detailed | 22 |
| abstract_inverted_index.distance | 164 |
| abstract_inverted_index.evaluate | 112 |
| abstract_inverted_index.patients | 132 |
| abstract_inverted_index.presents | 40 |
| abstract_inverted_index.proposed | 155, 206 |
| abstract_inverted_index.relevant | 80 |
| abstract_inverted_index.totaling | 139 |
| abstract_inverted_index.training | 135 |
| abstract_inverted_index.Hausdorff | 163 |
| abstract_inverted_index.Objective | 0 |
| abstract_inverted_index.Symmetric | 169 |
| abstract_inverted_index.Wuerzburg | 118 |
| abstract_inverted_index.abdominal | 151 |
| abstract_inverted_index.accuracy, | 161 |
| abstract_inverted_index.accuracy. | 69 |
| abstract_inverted_index.achieving | 21 |
| abstract_inverted_index.attention | 46, 61, 71 |
| abstract_inverted_index.conducted | 106 |
| abstract_inverted_index.contained | 126 |
| abstract_inverted_index.difficult | 25 |
| abstract_inverted_index.diseases. | 19 |
| abstract_inverted_index.functions | 49 |
| abstract_inverted_index.images’ | 29 |
| abstract_inverted_index.mechanism | 72 |
| abstract_inverted_index.potential | 198, 211 |
| abstract_inverted_index.structure | 97 |
| abstract_inverted_index.(MLAU-Net) | 50 |
| abstract_inverted_index.Conclusion | 204 |
| abstract_inverted_index.Ultrasound | 121 |
| abstract_inverted_index.annotation | 125 |
| abstract_inverted_index.background | 88 |
| abstract_inverted_index.challenges | 224 |
| abstract_inverted_index.comparison | 188 |
| abstract_inverted_index.diagnosing | 15 |
| abstract_inverted_index.irrelevant | 87 |
| abstract_inverted_index.mechanisms | 62 |
| abstract_inverted_index.monitoring | 17 |
| abstract_inverted_index.multi-loss | 48 |
| abstract_inverted_index.supervised | 45 |
| abstract_inverted_index.ultrasound | 9 |
| abstract_inverted_index.Dataset’s | 144 |
| abstract_inverted_index.boundaries. | 36, 232 |
| abstract_inverted_index.experiments | 107 |
| abstract_inverted_index.frameworks, | 194 |
| abstract_inverted_index.selectively | 77 |
| abstract_inverted_index.supervision | 65, 93 |
| abstract_inverted_index.demonstrates | 196 |
| abstract_inverted_index.information, | 89 |
| abstract_inverted_index.low-contrast | 34, 230 |
| abstract_inverted_index.performance. | 116 |
| abstract_inverted_index.segmentation | 3, 23, 68, 193, 219 |
| abstract_inverted_index.specificity, | 162 |
| abstract_inverted_index.respectively, | 184 |
| abstract_inverted_index.segmentation. | 53 |
| abstract_inverted_index.signal-to-noise | 31, 227 |
| abstract_inverted_index.high-dimensional | 96 |
| abstract_inverted_index.state-of-the-art | 190 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.83555812 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |