MLMA-Net: multi-level multi-attentional learning for multi-label object detection in textile defect images Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2102.00376
For the sake of recognizing and classifying textile defects, deep learning-based methods have been proposed and achieved remarkable success in single-label textile images. However, detecting multi-label defects in a textile image remains challenging due to the coexistence of multiple defects and small-size defects. To address these challenges, a multi-level, multi-attentional deep learning network (MLMA-Net) is proposed and built to 1) increase the feature representation ability to detect small-size defects; 2) generate a discriminative representation that maximizes the capability of attending the defect status, which leverages higher-resolution feature maps for multiple defects. Moreover, a multi-label object detection dataset (DHU-ML1000) in textile defect images is built to verify the performance of the proposed model. The results demonstrate that the network extracts more distinctive features and has better performance than the state-of-the-art approaches on the real-world industrial dataset.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2102.00376
- https://arxiv.org/pdf/2102.00376
- OA Status
- green
- Cited By
- 1
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3128311366
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3128311366Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2102.00376Digital Object Identifier
- Title
-
MLMA-Net: multi-level multi-attentional learning for multi-label object detection in textile defect imagesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-31Full publication date if available
- Authors
-
Bing Wei, Kuangrong Hao, Lei GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2102.00376Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2102.00376Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2102.00376Direct OA link when available
- Concepts
-
Textile, Net (polyhedron), Object (grammar), Artificial intelligence, Object based, Computer science, Computer vision, Pattern recognition (psychology), Mathematics, Materials science, Composite material, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3128311366 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2102.00376 |
| ids.doi | https://doi.org/10.48550/arxiv.2102.00376 |
| ids.mag | 3128311366 |
| ids.openalex | https://openalex.org/W3128311366 |
| fwci | |
| type | preprint |
| title | MLMA-Net: multi-level multi-attentional learning for multi-label object detection in textile defect images |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T12549 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9746999740600586 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Object Detection Techniques |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9599000215530396 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C164767435 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8351579308509827 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q28823 |
| concepts[0].display_name | Textile |
| concepts[1].id | https://openalex.org/C14166107 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5805227160453796 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[1].display_name | Net (polyhedron) |
| concepts[2].id | https://openalex.org/C2781238097 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5724634528160095 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[2].display_name | Object (grammar) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5392609238624573 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C3019973339 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5317700505256653 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q899523 |
| concepts[4].display_name | Object based |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.48388704657554626 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4476109743118286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3241610527038574 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18540388345718384 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15604233741760254 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| concepts[10].id | https://openalex.org/C159985019 |
| concepts[10].level | 1 |
| concepts[10].score | 0.05266660451889038 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[10].display_name | Composite material |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/textile |
| keywords[0].score | 0.8351579308509827 |
| keywords[0].display_name | Textile |
| keywords[1].id | https://openalex.org/keywords/net |
| keywords[1].score | 0.5805227160453796 |
| keywords[1].display_name | Net (polyhedron) |
| keywords[2].id | https://openalex.org/keywords/object |
| keywords[2].score | 0.5724634528160095 |
| keywords[2].display_name | Object (grammar) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5392609238624573 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/object-based |
| keywords[4].score | 0.5317700505256653 |
| keywords[4].display_name | Object based |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.48388704657554626 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.4476109743118286 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3241610527038574 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.18540388345718384 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/materials-science |
| keywords[9].score | 0.15604233741760254 |
| keywords[9].display_name | Materials science |
| keywords[10].id | https://openalex.org/keywords/composite-material |
| keywords[10].score | 0.05266660451889038 |
| keywords[10].display_name | Composite material |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2102.00376 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2102.00376 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2102.00376 |
| locations[1].id | doi:10.48550/arxiv.2102.00376 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2102.00376 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5064572247 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2298-1474 |
| authorships[0].author.display_name | Bing Wei |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3132238960 |
| authorships[0].affiliations[0].raw_affiliation_string | Student Member, IEEE |
| authorships[0].institutions[0].id | https://openalex.org/I3132238960 |
| authorships[0].institutions[0].ror | https://ror.org/01n002310 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3132238960 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Institute of Electrical and Electronics Engineers |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bing Wei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Student Member, IEEE |
| authorships[1].author.id | https://openalex.org/A5001762132 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9672-6161 |
| authorships[1].author.display_name | Kuangrong Hao |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3132238960 |
| authorships[1].affiliations[0].raw_affiliation_string | Member, IEEE |
| authorships[1].institutions[0].id | https://openalex.org/I3132238960 |
| authorships[1].institutions[0].ror | https://ror.org/01n002310 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3132238960 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Institute of Electrical and Electronics Engineers |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kuangrong Hao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Member, IEEE |
| authorships[2].author.id | https://openalex.org/A5002631807 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4272-9417 |
| authorships[2].author.display_name | Lei Gao |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3132238960 |
| authorships[2].affiliations[0].raw_affiliation_string | Member, IEEE |
| authorships[2].institutions[0].id | https://openalex.org/I3132238960 |
| authorships[2].institutions[0].ror | https://ror.org/01n002310 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3132238960 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Institute of Electrical and Electronics Engineers |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Lei Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Member, IEEE |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2102.00376 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MLMA-Net: multi-level multi-attentional learning for multi-label object detection in textile defect images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2100786069, https://openalex.org/W4239112351, https://openalex.org/W4256166021, https://openalex.org/W2585146553, https://openalex.org/W2156352682, https://openalex.org/W4298625047, https://openalex.org/W1991139010, https://openalex.org/W4205448459, https://openalex.org/W3197862913, https://openalex.org/W2266572308 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2102.00376 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2102.00376 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2102.00376 |
| primary_location.id | pmh:oai:arXiv.org:2102.00376 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2102.00376 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2102.00376 |
| publication_date | 2021-01-31 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2741611533, https://openalex.org/W2253590344, https://openalex.org/W3122238731, https://openalex.org/W2577763257, https://openalex.org/W2898006974, https://openalex.org/W2982014038, https://openalex.org/W3038952158, https://openalex.org/W2962835968, https://openalex.org/W1514535095, https://openalex.org/W2963403868, https://openalex.org/W1995589954, https://openalex.org/W2951548327, https://openalex.org/W8437397, https://openalex.org/W2943963440, https://openalex.org/W2791709739, https://openalex.org/W2561899375, https://openalex.org/W2870782586, https://openalex.org/W2796347433, https://openalex.org/W2891894830, https://openalex.org/W2114315281, https://openalex.org/W2790567169, https://openalex.org/W2963169347, https://openalex.org/W2194775991, https://openalex.org/W2907868778, https://openalex.org/W2565639579, https://openalex.org/W2618530766, https://openalex.org/W2116090201, https://openalex.org/W2771862771, https://openalex.org/W2904070573, https://openalex.org/W2344428106, https://openalex.org/W3039975350, https://openalex.org/W2902856291, https://openalex.org/W2102605133, https://openalex.org/W2615908833, https://openalex.org/W2919115771, https://openalex.org/W2613718673, https://openalex.org/W2831321715, https://openalex.org/W2521365688 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 28, 47, 71, 92 |
| abstract_inverted_index.1) | 59 |
| abstract_inverted_index.2) | 69 |
| abstract_inverted_index.To | 43 |
| abstract_inverted_index.in | 19, 27, 98 |
| abstract_inverted_index.is | 54, 102 |
| abstract_inverted_index.of | 3, 37, 78, 108 |
| abstract_inverted_index.on | 130 |
| abstract_inverted_index.to | 34, 58, 65, 104 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.The | 112 |
| abstract_inverted_index.and | 5, 15, 40, 56, 122 |
| abstract_inverted_index.due | 33 |
| abstract_inverted_index.for | 88 |
| abstract_inverted_index.has | 123 |
| abstract_inverted_index.the | 1, 35, 61, 76, 80, 106, 109, 116, 127, 131 |
| abstract_inverted_index.been | 13 |
| abstract_inverted_index.deep | 9, 50 |
| abstract_inverted_index.have | 12 |
| abstract_inverted_index.maps | 87 |
| abstract_inverted_index.more | 119 |
| abstract_inverted_index.sake | 2 |
| abstract_inverted_index.than | 126 |
| abstract_inverted_index.that | 74, 115 |
| abstract_inverted_index.built | 57, 103 |
| abstract_inverted_index.image | 30 |
| abstract_inverted_index.these | 45 |
| abstract_inverted_index.which | 83 |
| abstract_inverted_index.better | 124 |
| abstract_inverted_index.defect | 81, 100 |
| abstract_inverted_index.detect | 66 |
| abstract_inverted_index.images | 101 |
| abstract_inverted_index.model. | 111 |
| abstract_inverted_index.object | 94 |
| abstract_inverted_index.verify | 105 |
| abstract_inverted_index.ability | 64 |
| abstract_inverted_index.address | 44 |
| abstract_inverted_index.dataset | 96 |
| abstract_inverted_index.defects | 26, 39 |
| abstract_inverted_index.feature | 62, 86 |
| abstract_inverted_index.images. | 22 |
| abstract_inverted_index.methods | 11 |
| abstract_inverted_index.network | 52, 117 |
| abstract_inverted_index.remains | 31 |
| abstract_inverted_index.results | 113 |
| abstract_inverted_index.status, | 82 |
| abstract_inverted_index.success | 18 |
| abstract_inverted_index.textile | 7, 21, 29, 99 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.achieved | 16 |
| abstract_inverted_index.dataset. | 134 |
| abstract_inverted_index.defects, | 8 |
| abstract_inverted_index.defects. | 42, 90 |
| abstract_inverted_index.defects; | 68 |
| abstract_inverted_index.extracts | 118 |
| abstract_inverted_index.features | 121 |
| abstract_inverted_index.generate | 70 |
| abstract_inverted_index.increase | 60 |
| abstract_inverted_index.learning | 51 |
| abstract_inverted_index.multiple | 38, 89 |
| abstract_inverted_index.proposed | 14, 55, 110 |
| abstract_inverted_index.Moreover, | 91 |
| abstract_inverted_index.attending | 79 |
| abstract_inverted_index.detecting | 24 |
| abstract_inverted_index.detection | 95 |
| abstract_inverted_index.leverages | 84 |
| abstract_inverted_index.maximizes | 75 |
| abstract_inverted_index.(MLMA-Net) | 53 |
| abstract_inverted_index.approaches | 129 |
| abstract_inverted_index.capability | 77 |
| abstract_inverted_index.industrial | 133 |
| abstract_inverted_index.real-world | 132 |
| abstract_inverted_index.remarkable | 17 |
| abstract_inverted_index.small-size | 41, 67 |
| abstract_inverted_index.challenges, | 46 |
| abstract_inverted_index.challenging | 32 |
| abstract_inverted_index.classifying | 6 |
| abstract_inverted_index.coexistence | 36 |
| abstract_inverted_index.demonstrate | 114 |
| abstract_inverted_index.distinctive | 120 |
| abstract_inverted_index.multi-label | 25, 93 |
| abstract_inverted_index.performance | 107, 125 |
| abstract_inverted_index.recognizing | 4 |
| abstract_inverted_index.(DHU-ML1000) | 97 |
| abstract_inverted_index.multi-level, | 48 |
| abstract_inverted_index.single-label | 20 |
| abstract_inverted_index.discriminative | 72 |
| abstract_inverted_index.learning-based | 10 |
| abstract_inverted_index.representation | 63, 73 |
| abstract_inverted_index.state-of-the-art | 128 |
| abstract_inverted_index.higher-resolution | 85 |
| abstract_inverted_index.multi-attentional | 49 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |