mloz: A Highly Efficient Machine Learning-Based Ozone Parameterization for Climate Sensitivity Simulations Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.20422
Atmospheric ozone is a crucial absorber of solar radiation and an important greenhouse gas. However, most climate models participating in the Coupled Model Intercomparison Project (CMIP) still lack an interactive representation of ozone due to the high computational costs of atmospheric chemistry schemes. Here, we introduce a machine learning parameterization (mloz) to interactively model daily ozone variability and trends across the troposphere and stratosphere in standard climate sensitivity simulations, including two-way interactions of ozone with the Quasi-Biennial Oscillation. We demonstrate its high fidelity on decadal timescales and its flexible use online across two different climate models -- the UK Earth System Model (UKESM) and the German ICOsahedral Nonhydrostatic (ICON) model. With atmospheric temperature profile information as the only input, mloz produces stable ozone predictions around 31 times faster than the chemistry scheme in UKESM, contributing less than 4 percent of the respective total climate model runtimes. In particular, we also demonstrate its transferability to different climate models without chemistry schemes by transferring the parameterization from UKESM to ICON. This highlights the potential for widespread adoption in CMIP-level climate models that lack interactive chemistry for future climate change assessments, particularly when focusing on climate sensitivity simulations, where ozone trends and variability are known to significantly modulate atmospheric feedback processes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.20422
- https://arxiv.org/pdf/2509.20422
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414787388
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414787388Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.20422Digital Object Identifier
- Title
-
mloz: A Highly Efficient Machine Learning-Based Ozone Parameterization for Climate Sensitivity SimulationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-24Full publication date if available
- Authors
-
Yiling Ma, Nathan Luke Abraham, Stefan Versick, Roland Ruhnke, Andrea Schneidereit, Ulrike Niemeier, Francis Back, Peter Braesicke, Peer NowackList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.20422Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.20422Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.20422Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414787388 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.20422 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.20422 |
| ids.openalex | https://openalex.org/W4414787388 |
| fwci | |
| type | preprint |
| title | mloz: A Highly Efficient Machine Learning-Based Ozone Parameterization for Climate Sensitivity Simulations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11588 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9842000007629395 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Atmospheric and Environmental Gas Dynamics |
| topics[1].id | https://openalex.org/T11320 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9824000000953674 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Atmospheric Ozone and Climate |
| topics[2].id | https://openalex.org/T12120 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9765999913215637 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Air Quality Monitoring and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.20422 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.20422 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.20422 |
| locations[1].id | doi:10.48550/arxiv.2509.20422 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.20422 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020961821 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6504-4165 |
| authorships[0].author.display_name | Yiling Ma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ma, Yiling |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078321071 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3750-3544 |
| authorships[1].author.display_name | Nathan Luke Abraham |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abraham, Nathan Luke |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5077419543 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2265-6695 |
| authorships[2].author.display_name | Stefan Versick |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Versick, Stefan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006929022 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0353-1603 |
| authorships[3].author.display_name | Roland Ruhnke |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruhnke, Roland |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5045095782 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Andrea Schneidereit |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Schneidereit, Andrea |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083485437 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0088-8364 |
| authorships[5].author.display_name | Ulrike Niemeier |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Niemeier, Ulrike |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5016970678 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Francis Back |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Back, Felix |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5010787142 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1423-0619 |
| authorships[7].author.display_name | Peter Braesicke |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Braesicke, Peter |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5029231689 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4588-7832 |
| authorships[8].author.display_name | Peer Nowack |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Nowack, Peer |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.20422 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | mloz: A Highly Efficient Machine Learning-Based Ozone Parameterization for Climate Sensitivity Simulations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11588 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9842000007629395 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Atmospheric and Environmental Gas Dynamics |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.20422 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.20422 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.20422 |
| primary_location.id | pmh:oai:arXiv.org:2509.20422 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.20422 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.20422 |
| publication_date | 2025-09-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 137 |
| abstract_inverted_index.a | 3, 46 |
| abstract_inverted_index.-- | 96 |
| abstract_inverted_index.31 | 125 |
| abstract_inverted_index.In | 146 |
| abstract_inverted_index.UK | 98 |
| abstract_inverted_index.We | 78 |
| abstract_inverted_index.an | 10, 28 |
| abstract_inverted_index.as | 115 |
| abstract_inverted_index.by | 160 |
| abstract_inverted_index.in | 19, 64, 132, 175 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 6, 31, 39, 72, 139 |
| abstract_inverted_index.on | 83, 191 |
| abstract_inverted_index.to | 34, 51, 153, 166, 202 |
| abstract_inverted_index.we | 44, 148 |
| abstract_inverted_index.and | 9, 57, 62, 86, 103, 198 |
| abstract_inverted_index.are | 200 |
| abstract_inverted_index.due | 33 |
| abstract_inverted_index.for | 172, 183 |
| abstract_inverted_index.its | 80, 87, 151 |
| abstract_inverted_index.the | 20, 35, 60, 75, 97, 104, 116, 129, 140, 162, 170 |
| abstract_inverted_index.two | 92 |
| abstract_inverted_index.use | 89 |
| abstract_inverted_index.This | 168 |
| abstract_inverted_index.With | 110 |
| abstract_inverted_index.also | 149 |
| abstract_inverted_index.from | 164 |
| abstract_inverted_index.gas. | 13 |
| abstract_inverted_index.high | 36, 81 |
| abstract_inverted_index.lack | 27, 180 |
| abstract_inverted_index.less | 135 |
| abstract_inverted_index.mloz | 119 |
| abstract_inverted_index.most | 15 |
| abstract_inverted_index.only | 117 |
| abstract_inverted_index.than | 128, 136 |
| abstract_inverted_index.that | 179 |
| abstract_inverted_index.when | 189 |
| abstract_inverted_index.with | 74 |
| abstract_inverted_index.Earth | 99 |
| abstract_inverted_index.Here, | 43 |
| abstract_inverted_index.ICON. | 167 |
| abstract_inverted_index.Model | 22, 101 |
| abstract_inverted_index.UKESM | 165 |
| abstract_inverted_index.costs | 38 |
| abstract_inverted_index.daily | 54 |
| abstract_inverted_index.known | 201 |
| abstract_inverted_index.model | 53, 144 |
| abstract_inverted_index.ozone | 1, 32, 55, 73, 122, 196 |
| abstract_inverted_index.solar | 7 |
| abstract_inverted_index.still | 26 |
| abstract_inverted_index.times | 126 |
| abstract_inverted_index.total | 142 |
| abstract_inverted_index.where | 195 |
| abstract_inverted_index.(CMIP) | 25 |
| abstract_inverted_index.(ICON) | 108 |
| abstract_inverted_index.(mloz) | 50 |
| abstract_inverted_index.German | 105 |
| abstract_inverted_index.System | 100 |
| abstract_inverted_index.UKESM, | 133 |
| abstract_inverted_index.across | 59, 91 |
| abstract_inverted_index.around | 124 |
| abstract_inverted_index.change | 186 |
| abstract_inverted_index.faster | 127 |
| abstract_inverted_index.future | 184 |
| abstract_inverted_index.input, | 118 |
| abstract_inverted_index.model. | 109 |
| abstract_inverted_index.models | 17, 95, 156, 178 |
| abstract_inverted_index.online | 90 |
| abstract_inverted_index.scheme | 131 |
| abstract_inverted_index.stable | 121 |
| abstract_inverted_index.trends | 58, 197 |
| abstract_inverted_index.(UKESM) | 102 |
| abstract_inverted_index.Coupled | 21 |
| abstract_inverted_index.Project | 24 |
| abstract_inverted_index.climate | 16, 66, 94, 143, 155, 177, 185, 192 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.decadal | 84 |
| abstract_inverted_index.machine | 47 |
| abstract_inverted_index.percent | 138 |
| abstract_inverted_index.profile | 113 |
| abstract_inverted_index.schemes | 159 |
| abstract_inverted_index.two-way | 70 |
| abstract_inverted_index.without | 157 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.absorber | 5 |
| abstract_inverted_index.adoption | 174 |
| abstract_inverted_index.feedback | 206 |
| abstract_inverted_index.fidelity | 82 |
| abstract_inverted_index.flexible | 88 |
| abstract_inverted_index.focusing | 190 |
| abstract_inverted_index.learning | 48 |
| abstract_inverted_index.modulate | 204 |
| abstract_inverted_index.produces | 120 |
| abstract_inverted_index.schemes. | 42 |
| abstract_inverted_index.standard | 65 |
| abstract_inverted_index.chemistry | 41, 130, 158, 182 |
| abstract_inverted_index.different | 93, 154 |
| abstract_inverted_index.important | 11 |
| abstract_inverted_index.including | 69 |
| abstract_inverted_index.introduce | 45 |
| abstract_inverted_index.potential | 171 |
| abstract_inverted_index.radiation | 8 |
| abstract_inverted_index.runtimes. | 145 |
| abstract_inverted_index.CMIP-level | 176 |
| abstract_inverted_index.greenhouse | 12 |
| abstract_inverted_index.highlights | 169 |
| abstract_inverted_index.processes. | 207 |
| abstract_inverted_index.respective | 141 |
| abstract_inverted_index.timescales | 85 |
| abstract_inverted_index.widespread | 173 |
| abstract_inverted_index.Atmospheric | 0 |
| abstract_inverted_index.ICOsahedral | 106 |
| abstract_inverted_index.atmospheric | 40, 111, 205 |
| abstract_inverted_index.demonstrate | 79, 150 |
| abstract_inverted_index.information | 114 |
| abstract_inverted_index.interactive | 29, 181 |
| abstract_inverted_index.particular, | 147 |
| abstract_inverted_index.predictions | 123 |
| abstract_inverted_index.sensitivity | 67, 193 |
| abstract_inverted_index.temperature | 112 |
| abstract_inverted_index.troposphere | 61 |
| abstract_inverted_index.variability | 56, 199 |
| abstract_inverted_index.Oscillation. | 77 |
| abstract_inverted_index.assessments, | 187 |
| abstract_inverted_index.contributing | 134 |
| abstract_inverted_index.interactions | 71 |
| abstract_inverted_index.particularly | 188 |
| abstract_inverted_index.simulations, | 68, 194 |
| abstract_inverted_index.stratosphere | 63 |
| abstract_inverted_index.transferring | 161 |
| abstract_inverted_index.computational | 37 |
| abstract_inverted_index.interactively | 52 |
| abstract_inverted_index.participating | 18 |
| abstract_inverted_index.significantly | 203 |
| abstract_inverted_index.Nonhydrostatic | 107 |
| abstract_inverted_index.Quasi-Biennial | 76 |
| abstract_inverted_index.representation | 30 |
| abstract_inverted_index.Intercomparison | 23 |
| abstract_inverted_index.transferability | 152 |
| abstract_inverted_index.parameterization | 49, 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |