MLRM: A Multiple Linear Regression based Model for Average Temperature Prediction of A Day Article Swipe
Ishu Gupta
,
Harsh Mittal
,
Deepak Rikhari
,
Ashutosh Kumar Singh
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.05835
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.05835
Weather is a phenomenon that affects everything and everyone around us on a daily basis. Weather prediction has been an important point of study for decades as researchers have tried to predict the weather and climatic changes using traditional meteorological techniques. With the advent of modern technologies and computing power, we can do so with the help of machine learning techniques. We aim to predict the weather of an area using past meteorological data and features using the Multiple Linear Regression Model. The performance of the model is evaluated and a conclusion is drawn. The model is successfully able to predict the average temperature of a day with an error of 2.8 degrees Celsius.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.05835
- https://arxiv.org/pdf/2203.05835
- OA Status
- green
- Cited By
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221154964
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221154964Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.05835Digital Object Identifier
- Title
-
MLRM: A Multiple Linear Regression based Model for Average Temperature Prediction of A DayWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-11Full publication date if available
- Authors
-
Ishu Gupta, Harsh Mittal, Deepak Rikhari, Ashutosh Kumar SinghList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.05835Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.05835Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.05835Direct OA link when available
- Concepts
-
Linear regression, Weather prediction, Regression, Meteorology, Regression analysis, Weather forecasting, Computer science, Predictive power, Environmental science, Climatology, Statistics, Machine learning, Mathematics, Geography, Geology, Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 5, 2022: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221154964 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.05835 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.05835 |
| ids.openalex | https://openalex.org/W4221154964 |
| fwci | |
| type | preprint |
| title | MLRM: A Multiple Linear Regression based Model for Average Temperature Prediction of A Day |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13497 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1211 |
| topics[0].subfield.display_name | Philosophy |
| topics[0].display_name | Hermeneutics and Narrative Identity |
| topics[1].id | https://openalex.org/T13695 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9749000072479248 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3600 |
| topics[1].subfield.display_name | General Health Professions |
| topics[1].display_name | Aging, Elder Care, and Social Issues |
| topics[2].id | https://openalex.org/T13099 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.95660001039505 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Health, Medicine and Society |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48921125 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6365219354629517 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[0].display_name | Linear regression |
| concepts[1].id | https://openalex.org/C2987469573 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6007198095321655 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[1].display_name | Weather prediction |
| concepts[2].id | https://openalex.org/C83546350 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4880892038345337 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[2].display_name | Regression |
| concepts[3].id | https://openalex.org/C153294291 |
| concepts[3].level | 1 |
| concepts[3].score | 0.48658430576324463 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[3].display_name | Meteorology |
| concepts[4].id | https://openalex.org/C152877465 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48285752534866333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[4].display_name | Regression analysis |
| concepts[5].id | https://openalex.org/C21001229 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43813008069992065 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[5].display_name | Weather forecasting |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4346548616886139 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2778136018 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4337809681892395 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10350689 |
| concepts[7].display_name | Predictive power |
| concepts[8].id | https://openalex.org/C39432304 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3822738528251648 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[8].display_name | Environmental science |
| concepts[9].id | https://openalex.org/C49204034 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3502195179462433 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[9].display_name | Climatology |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3274206519126892 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.308777391910553 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2543971538543701 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1805531084537506 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C111472728 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[16].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/linear-regression |
| keywords[0].score | 0.6365219354629517 |
| keywords[0].display_name | Linear regression |
| keywords[1].id | https://openalex.org/keywords/weather-prediction |
| keywords[1].score | 0.6007198095321655 |
| keywords[1].display_name | Weather prediction |
| keywords[2].id | https://openalex.org/keywords/regression |
| keywords[2].score | 0.4880892038345337 |
| keywords[2].display_name | Regression |
| keywords[3].id | https://openalex.org/keywords/meteorology |
| keywords[3].score | 0.48658430576324463 |
| keywords[3].display_name | Meteorology |
| keywords[4].id | https://openalex.org/keywords/regression-analysis |
| keywords[4].score | 0.48285752534866333 |
| keywords[4].display_name | Regression analysis |
| keywords[5].id | https://openalex.org/keywords/weather-forecasting |
| keywords[5].score | 0.43813008069992065 |
| keywords[5].display_name | Weather forecasting |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4346548616886139 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/predictive-power |
| keywords[7].score | 0.4337809681892395 |
| keywords[7].display_name | Predictive power |
| keywords[8].id | https://openalex.org/keywords/environmental-science |
| keywords[8].score | 0.3822738528251648 |
| keywords[8].display_name | Environmental science |
| keywords[9].id | https://openalex.org/keywords/climatology |
| keywords[9].score | 0.3502195179462433 |
| keywords[9].display_name | Climatology |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.3274206519126892 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.308777391910553 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.2543971538543701 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.1805531084537506 |
| keywords[13].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.05835 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.05835 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.05835 |
| locations[1].id | doi:10.48550/arxiv.2203.05835 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.05835 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008286763 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3746-6034 |
| authorships[0].author.display_name | Ishu Gupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gupta, Ishu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041105612 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5583-3788 |
| authorships[1].author.display_name | Harsh Mittal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mittal, Harsh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5019478949 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Deepak Rikhari |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rikhari, Deepak |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5048428074 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2491-3678 |
| authorships[3].author.display_name | Ashutosh Kumar Singh |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Singh, Ashutosh Kumar |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.05835 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-03T00:00:00 |
| display_name | MLRM: A Multiple Linear Regression based Model for Average Temperature Prediction of A Day |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13497 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1211 |
| primary_topic.subfield.display_name | Philosophy |
| primary_topic.display_name | Hermeneutics and Narrative Identity |
| related_works | https://openalex.org/W1420506, https://openalex.org/W4654067, https://openalex.org/W4065891, https://openalex.org/W1007615, https://openalex.org/W10571397, https://openalex.org/W12298751, https://openalex.org/W3077036, https://openalex.org/W4737193, https://openalex.org/W15108978, https://openalex.org/W573350 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.05835 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.05835 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.05835 |
| primary_location.id | pmh:oai:arXiv.org:2203.05835 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.05835 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.05835 |
| publication_date | 2022-03-11 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 12, 90, 105 |
| abstract_inverted_index.We | 61 |
| abstract_inverted_index.an | 19, 68, 108 |
| abstract_inverted_index.as | 26 |
| abstract_inverted_index.do | 52 |
| abstract_inverted_index.is | 1, 87, 92, 96 |
| abstract_inverted_index.of | 22, 44, 57, 67, 84, 104, 110 |
| abstract_inverted_index.on | 11 |
| abstract_inverted_index.so | 53 |
| abstract_inverted_index.to | 30, 63, 99 |
| abstract_inverted_index.us | 10 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.2.8 | 111 |
| abstract_inverted_index.The | 82, 94 |
| abstract_inverted_index.aim | 62 |
| abstract_inverted_index.and | 7, 34, 47, 74, 89 |
| abstract_inverted_index.can | 51 |
| abstract_inverted_index.day | 106 |
| abstract_inverted_index.for | 24 |
| abstract_inverted_index.has | 17 |
| abstract_inverted_index.the | 32, 42, 55, 65, 77, 85, 101 |
| abstract_inverted_index.With | 41 |
| abstract_inverted_index.able | 98 |
| abstract_inverted_index.area | 69 |
| abstract_inverted_index.been | 18 |
| abstract_inverted_index.data | 73 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.help | 56 |
| abstract_inverted_index.past | 71 |
| abstract_inverted_index.that | 4 |
| abstract_inverted_index.with | 54, 107 |
| abstract_inverted_index.daily | 13 |
| abstract_inverted_index.error | 109 |
| abstract_inverted_index.model | 86, 95 |
| abstract_inverted_index.point | 21 |
| abstract_inverted_index.study | 23 |
| abstract_inverted_index.tried | 29 |
| abstract_inverted_index.using | 37, 70, 76 |
| abstract_inverted_index.Linear | 79 |
| abstract_inverted_index.Model. | 81 |
| abstract_inverted_index.advent | 43 |
| abstract_inverted_index.around | 9 |
| abstract_inverted_index.basis. | 14 |
| abstract_inverted_index.drawn. | 93 |
| abstract_inverted_index.modern | 45 |
| abstract_inverted_index.power, | 49 |
| abstract_inverted_index.Weather | 0, 15 |
| abstract_inverted_index.affects | 5 |
| abstract_inverted_index.average | 102 |
| abstract_inverted_index.changes | 36 |
| abstract_inverted_index.decades | 25 |
| abstract_inverted_index.degrees | 112 |
| abstract_inverted_index.machine | 58 |
| abstract_inverted_index.predict | 31, 64, 100 |
| abstract_inverted_index.weather | 33, 66 |
| abstract_inverted_index.Celsius. | 113 |
| abstract_inverted_index.Multiple | 78 |
| abstract_inverted_index.climatic | 35 |
| abstract_inverted_index.everyone | 8 |
| abstract_inverted_index.features | 75 |
| abstract_inverted_index.learning | 59 |
| abstract_inverted_index.computing | 48 |
| abstract_inverted_index.evaluated | 88 |
| abstract_inverted_index.important | 20 |
| abstract_inverted_index.Regression | 80 |
| abstract_inverted_index.conclusion | 91 |
| abstract_inverted_index.everything | 6 |
| abstract_inverted_index.phenomenon | 3 |
| abstract_inverted_index.prediction | 16 |
| abstract_inverted_index.performance | 83 |
| abstract_inverted_index.researchers | 27 |
| abstract_inverted_index.techniques. | 40, 60 |
| abstract_inverted_index.temperature | 103 |
| abstract_inverted_index.traditional | 38 |
| abstract_inverted_index.successfully | 97 |
| abstract_inverted_index.technologies | 46 |
| abstract_inverted_index.meteorological | 39, 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |