MLRM: A Multiple Linear Regression based Model for Average Temperature\n Prediction of A Day Article Swipe
Ishu Gupta
,
Harsh Mittal
,
Deepak Rikhari
,
Ashutosh Kumar Singh
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.05835
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.05835
Weather is a phenomenon that affects everything and everyone around us on a\ndaily basis. Weather prediction has been an important point of study for\ndecades as researchers have tried to predict the weather and climatic changes\nusing traditional meteorological techniques. With the advent of modern\ntechnologies and computing power, we can do so with the help of machine\nlearning techniques. We aim to predict the weather of an area using past\nmeteorological data and features using the Multiple Linear Regression Model.\nThe performance of the model is evaluated and a conclusion is drawn. The model\nis successfully able to predict the average temperature of a day with an error\nof 2.8 degrees Celsius.\n
Related Topics
Concepts
Metadata
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2203.05835
- https://arxiv.org/pdf/2203.05835
- OA Status
- green
- Cited By
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226146300
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226146300Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.05835Digital Object Identifier
- Title
-
MLRM: A Multiple Linear Regression based Model for Average Temperature\n Prediction of A DayWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-11Full publication date if available
- Authors
-
Ishu Gupta, Harsh Mittal, Deepak Rikhari, Ashutosh Kumar SinghList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.05835Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.05835Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.05835Direct OA link when available
- Concepts
-
Weather prediction, Linear regression, Regression analysis, Computer science, Regression, Meteorology, Weather forecasting, Predictive modelling, Predictive power, Mean squared prediction error, Machine learning, Environmental science, Statistics, Mathematics, Geography, Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 8, 2022: 9Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226146300 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.05835 |
| ids.openalex | https://openalex.org/W4226146300 |
| fwci | 2.06397174 |
| type | preprint |
| title | MLRM: A Multiple Linear Regression based Model for Average Temperature\n Prediction of A Day |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9415000081062317 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9133999943733215 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2987469573 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6795516014099121 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[0].display_name | Weather prediction |
| concepts[1].id | https://openalex.org/C48921125 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6533336639404297 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[1].display_name | Linear regression |
| concepts[2].id | https://openalex.org/C152877465 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49451348185539246 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[2].display_name | Regression analysis |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4944138526916504 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C83546350 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4859970510005951 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[4].display_name | Regression |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4652477204799652 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C21001229 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4535045921802521 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[6].display_name | Weather forecasting |
| concepts[7].id | https://openalex.org/C45804977 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4276581406593323 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[7].display_name | Predictive modelling |
| concepts[8].id | https://openalex.org/C2778136018 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4273775815963745 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10350689 |
| concepts[8].display_name | Predictive power |
| concepts[9].id | https://openalex.org/C167085575 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42092013359069824 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6803654 |
| concepts[9].display_name | Mean squared prediction error |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3737756013870239 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C39432304 |
| concepts[11].level | 0 |
| concepts[11].score | 0.35295653343200684 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[11].display_name | Environmental science |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2722342312335968 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2113867700099945 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13371455669403076 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C111472728 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[16].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/weather-prediction |
| keywords[0].score | 0.6795516014099121 |
| keywords[0].display_name | Weather prediction |
| keywords[1].id | https://openalex.org/keywords/linear-regression |
| keywords[1].score | 0.6533336639404297 |
| keywords[1].display_name | Linear regression |
| keywords[2].id | https://openalex.org/keywords/regression-analysis |
| keywords[2].score | 0.49451348185539246 |
| keywords[2].display_name | Regression analysis |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4944138526916504 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/regression |
| keywords[4].score | 0.4859970510005951 |
| keywords[4].display_name | Regression |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.4652477204799652 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/weather-forecasting |
| keywords[6].score | 0.4535045921802521 |
| keywords[6].display_name | Weather forecasting |
| keywords[7].id | https://openalex.org/keywords/predictive-modelling |
| keywords[7].score | 0.4276581406593323 |
| keywords[7].display_name | Predictive modelling |
| keywords[8].id | https://openalex.org/keywords/predictive-power |
| keywords[8].score | 0.4273775815963745 |
| keywords[8].display_name | Predictive power |
| keywords[9].id | https://openalex.org/keywords/mean-squared-prediction-error |
| keywords[9].score | 0.42092013359069824 |
| keywords[9].display_name | Mean squared prediction error |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3737756013870239 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/environmental-science |
| keywords[11].score | 0.35295653343200684 |
| keywords[11].display_name | Environmental science |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.2722342312335968 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.2113867700099945 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.13371455669403076 |
| keywords[14].display_name | Geography |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2203.05835 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.05835 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.05835 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5008286763 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3746-6034 |
| authorships[0].author.display_name | Ishu Gupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gupta, Ishu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041105612 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5583-3788 |
| authorships[1].author.display_name | Harsh Mittal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mittal, Harsh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5019478949 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Deepak Rikhari |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rikhari, Deepak |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5013082893 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8053-5050 |
| authorships[3].author.display_name | Ashutosh Kumar Singh |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Singh, Ashutosh Kumar |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.05835 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-05T00:00:00 |
| display_name | MLRM: A Multiple Linear Regression based Model for Average Temperature\n Prediction of A Day |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9415000081062317 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W3189884647, https://openalex.org/W2884834684, https://openalex.org/W2917165927, https://openalex.org/W4385950391, https://openalex.org/W4377970672, https://openalex.org/W3123614577, https://openalex.org/W2970320467, https://openalex.org/W3023917431, https://openalex.org/W3127901020, https://openalex.org/W4311802502 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.05835 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.05835 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.05835 |
| primary_location.id | pmh:oai:arXiv.org:2203.05835 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.05835 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.05835 |
| publication_date | 2022-03-11 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 83, 97 |
| abstract_inverted_index.We | 56 |
| abstract_inverted_index.an | 18, 63, 100 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.do | 48 |
| abstract_inverted_index.is | 1, 80, 85 |
| abstract_inverted_index.of | 21, 41, 53, 62, 77, 96 |
| abstract_inverted_index.on | 11 |
| abstract_inverted_index.so | 49 |
| abstract_inverted_index.to | 28, 58, 91 |
| abstract_inverted_index.us | 10 |
| abstract_inverted_index.we | 46 |
| abstract_inverted_index.2.8 | 102 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.aim | 57 |
| abstract_inverted_index.and | 7, 32, 43, 68, 82 |
| abstract_inverted_index.can | 47 |
| abstract_inverted_index.day | 98 |
| abstract_inverted_index.has | 16 |
| abstract_inverted_index.the | 30, 39, 51, 60, 71, 78, 93 |
| abstract_inverted_index.With | 38 |
| abstract_inverted_index.able | 90 |
| abstract_inverted_index.area | 64 |
| abstract_inverted_index.been | 17 |
| abstract_inverted_index.data | 67 |
| abstract_inverted_index.have | 26 |
| abstract_inverted_index.help | 52 |
| abstract_inverted_index.that | 4 |
| abstract_inverted_index.with | 50, 99 |
| abstract_inverted_index.model | 79 |
| abstract_inverted_index.point | 20 |
| abstract_inverted_index.study | 22 |
| abstract_inverted_index.tried | 27 |
| abstract_inverted_index.using | 65, 70 |
| abstract_inverted_index.Linear | 73 |
| abstract_inverted_index.advent | 40 |
| abstract_inverted_index.around | 9 |
| abstract_inverted_index.basis. | 13 |
| abstract_inverted_index.drawn. | 86 |
| abstract_inverted_index.power, | 45 |
| abstract_inverted_index.Weather | 0, 14 |
| abstract_inverted_index.affects | 5 |
| abstract_inverted_index.average | 94 |
| abstract_inverted_index.degrees | 103 |
| abstract_inverted_index.predict | 29, 59, 92 |
| abstract_inverted_index.weather | 31, 61 |
| abstract_inverted_index.Multiple | 72 |
| abstract_inverted_index.a\ndaily | 12 |
| abstract_inverted_index.climatic | 33 |
| abstract_inverted_index.everyone | 8 |
| abstract_inverted_index.features | 69 |
| abstract_inverted_index.computing | 44 |
| abstract_inverted_index.error\nof | 101 |
| abstract_inverted_index.evaluated | 81 |
| abstract_inverted_index.important | 19 |
| abstract_inverted_index.model\nis | 88 |
| abstract_inverted_index.Celsius.\n | 104 |
| abstract_inverted_index.Regression | 74 |
| abstract_inverted_index.conclusion | 84 |
| abstract_inverted_index.everything | 6 |
| abstract_inverted_index.phenomenon | 3 |
| abstract_inverted_index.prediction | 15 |
| abstract_inverted_index.Model.\nThe | 75 |
| abstract_inverted_index.performance | 76 |
| abstract_inverted_index.researchers | 25 |
| abstract_inverted_index.techniques. | 37, 55 |
| abstract_inverted_index.temperature | 95 |
| abstract_inverted_index.traditional | 35 |
| abstract_inverted_index.for\ndecades | 23 |
| abstract_inverted_index.successfully | 89 |
| abstract_inverted_index.changes\nusing | 34 |
| abstract_inverted_index.meteorological | 36 |
| abstract_inverted_index.machine\nlearning | 54 |
| abstract_inverted_index.modern\ntechnologies | 42 |
| abstract_inverted_index.past\nmeteorological | 66 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.83920487 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |