MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine Learning Article Swipe
Sudarsanan Rajasekaran
,
Sanjoli Narang
,
Anton A. Zabreyko
,
Manya Ghobadi
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3696348.3696878
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3696348.3696878
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3696348.3696878
- OA Status
- gold
- Cited By
- 2
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404240318
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404240318Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3696348.3696878Digital Object Identifier
- Title
-
MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-11Full publication date if available
- Authors
-
Sudarsanan Rajasekaran, Sanjoli Narang, Anton A. Zabreyko, Manya GhobadiList of authors in order
- Landing page
-
https://doi.org/10.1145/3696348.3696878Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3696348.3696878Direct OA link when available
- Concepts
-
Computer science, Scheduling (production processes), Distributed computing, Parallel computing, Mathematical optimization, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404240318 |
|---|---|
| doi | https://doi.org/10.1145/3696348.3696878 |
| ids.doi | https://doi.org/10.1145/3696348.3696878 |
| ids.openalex | https://openalex.org/W4404240318 |
| fwci | 3.05530053 |
| type | article |
| title | MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 176 |
| biblio.first_page | 167 |
| topics[0].id | https://openalex.org/T10101 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Cloud Computing and Resource Management |
| topics[1].id | https://openalex.org/T10715 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed and Parallel Computing Systems |
| topics[2].id | https://openalex.org/T10054 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1708 |
| topics[2].subfield.display_name | Hardware and Architecture |
| topics[2].display_name | Parallel Computing and Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7834203839302063 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C206729178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5487410426139832 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[1].display_name | Scheduling (production processes) |
| concepts[2].id | https://openalex.org/C120314980 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5425148606300354 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[2].display_name | Distributed computing |
| concepts[3].id | https://openalex.org/C173608175 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43268272280693054 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[3].display_name | Parallel computing |
| concepts[4].id | https://openalex.org/C126255220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.21675732731819153 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[4].display_name | Mathematical optimization |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.07153946161270142 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7834203839302063 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/scheduling |
| keywords[1].score | 0.5487410426139832 |
| keywords[1].display_name | Scheduling (production processes) |
| keywords[2].id | https://openalex.org/keywords/distributed-computing |
| keywords[2].score | 0.5425148606300354 |
| keywords[2].display_name | Distributed computing |
| keywords[3].id | https://openalex.org/keywords/parallel-computing |
| keywords[3].score | 0.43268272280693054 |
| keywords[3].display_name | Parallel computing |
| keywords[4].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[4].score | 0.21675732731819153 |
| keywords[4].display_name | Mathematical optimization |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.07153946161270142 |
| keywords[5].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1145/3696348.3696878 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 23rd ACM Workshop on Hot Topics in Networks |
| locations[0].landing_page_url | https://doi.org/10.1145/3696348.3696878 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5048032361 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1868-5223 |
| authorships[0].author.display_name | Sudarsanan Rajasekaran |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[0].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology |
| authorships[0].institutions[0].id | https://openalex.org/I63966007 |
| authorships[0].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sudarsanan Rajasekaran |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Massachusetts Institute of Technology |
| authorships[1].author.id | https://openalex.org/A5067423696 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8723-2263 |
| authorships[1].author.display_name | Sanjoli Narang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[1].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I63966007 |
| authorships[1].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sanjoli Narang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Massachusetts Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5093949521 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5832-6458 |
| authorships[2].author.display_name | Anton A. Zabreyko |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[2].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I63966007 |
| authorships[2].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anton A. Zabreyko |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Massachusetts Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5058729992 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4095-1519 |
| authorships[3].author.display_name | Manya Ghobadi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[3].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology |
| authorships[3].institutions[0].id | https://openalex.org/I63966007 |
| authorships[3].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Manya Ghobadi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Massachusetts Institute of Technology |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3696348.3696878 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10101 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Cloud Computing and Resource Management |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3696348.3696878 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 23rd ACM Workshop on Hot Topics in Networks |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3696348.3696878 |
| primary_location.id | doi:10.1145/3696348.3696878 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 23rd ACM Workshop on Hot Topics in Networks |
| primary_location.landing_page_url | https://doi.org/10.1145/3696348.3696878 |
| publication_date | 2024-11-11 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2164740236, https://openalex.org/W2117884704, https://openalex.org/W4388644584, https://openalex.org/W2594041104, https://openalex.org/W2168595508, https://openalex.org/W2101182788, https://openalex.org/W3006487403, https://openalex.org/W3160520312, https://openalex.org/W2044464197, https://openalex.org/W1579768150, https://openalex.org/W1894154420, https://openalex.org/W1534786329, https://openalex.org/W2022844530, https://openalex.org/W2744387122, https://openalex.org/W2952435244, https://openalex.org/W2102549685, https://openalex.org/W4248409180, https://openalex.org/W4387321109, https://openalex.org/W3159989400, https://openalex.org/W3046470751, https://openalex.org/W4309426022, https://openalex.org/W2517233056, https://openalex.org/W2109488193, https://openalex.org/W2081787917, https://openalex.org/W1990920914, https://openalex.org/W4240522432, https://openalex.org/W2794896506, https://openalex.org/W2969388332, https://openalex.org/W4308995136, https://openalex.org/W2798515322, https://openalex.org/W2975712713, https://openalex.org/W2149804187, https://openalex.org/W4308995365, https://openalex.org/W2028301248, https://openalex.org/W1979948822, https://openalex.org/W2113019421, https://openalex.org/W2109195783, https://openalex.org/W2101871381, https://openalex.org/W2100166367, https://openalex.org/W4388644525, https://openalex.org/W4290991121, https://openalex.org/W2036003010, https://openalex.org/W142258998, https://openalex.org/W95608104, https://openalex.org/W3105875719, https://openalex.org/W2734941459 |
| referenced_works_count | 46 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.9031441 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |