MMD Aggregated Two-Sample Test Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.15073
We propose two novel nonparametric two-sample kernel tests based on the\nMaximum Mean Discrepancy (MMD). First, for a fixed kernel, we construct an MMD\ntest using either permutations or a wild bootstrap, two popular numerical\nprocedures to determine the test threshold. We prove that this test controls\nthe probability of type I error non-asymptotically. Hence, it can be used\nreliably even in settings with small sample sizes as it remains\nwell-calibrated, which differs from previous MMD tests which only guarantee\ncorrect test level asymptotically. When the difference in densities lies in a\nSobolev ball, we prove minimax optimality of our MMD test with a specific\nkernel depending on the smoothness parameter of the Sobolev ball. In practice,\nthis parameter is unknown and, hence, the optimal MMD test with this particular\nkernel cannot be used. To overcome this issue, we construct an aggregated test,\ncalled MMDAgg, which is adaptive to the smoothness parameter. The test power is\nmaximised over the collection of kernels used, without requiring held-out data\nfor kernel selection (which results in a loss of test power), or arbitrary\nkernel choices such as the median heuristic. We prove that MMDAgg still\ncontrols the level non-asymptotically, and achieves the minimax rate over\nSobolev balls, up to an iterated logarithmic term. Our guarantees are not\nrestricted to a specific type of kernel, but hold for any product of\none-dimensional translation invariant characteristic kernels. We provide a\nuser-friendly parameter-free implementation of MMDAgg using an adaptive\ncollection of bandwidths. We demonstrate that MMDAgg significantly outperforms\nalternative state-of-the-art MMD-based two-sample tests on synthetic data\nsatisfying the Sobolev smoothness assumption, and that, on real-world image\ndata, MMDAgg closely matches the power of tests leveraging the use of models\nsuch as neural networks.\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2110.15073
- https://arxiv.org/pdf/2110.15073
- OA Status
- green
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3209376323
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3209376323Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2110.15073Digital Object Identifier
- Title
-
MMD Aggregated Two-Sample TestWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-28Full publication date if available
- Authors
-
Antonin Schrab, Ilmun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, Arthur GrettonList of authors in order
- Landing page
-
https://arxiv.org/abs/2110.15073Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2110.15073Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2110.15073Direct OA link when available
- Concepts
-
Test (biology), Sample (material), Statistics, Computer science, Mathematics, Chromatography, Chemistry, Geology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3209376323 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2110.15073 |
| ids.mag | 3209376323 |
| ids.openalex | https://openalex.org/W3209376323 |
| fwci | 0.0 |
| type | preprint |
| title | MMD Aggregated Two-Sample Test |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T12404 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2612 |
| topics[1].subfield.display_name | Numerical Analysis |
| topics[1].display_name | Mathematical Approximation and Integration |
| topics[2].id | https://openalex.org/T11901 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9832000136375427 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Methods and Mixture Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777267654 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5874689221382141 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3519023 |
| concepts[0].display_name | Test (biology) |
| concepts[1].id | https://openalex.org/C198531522 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5654444694519043 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[1].display_name | Sample (material) |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.35901930928230286 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.33571144938468933 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2909069061279297 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C43617362 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2418903410434723 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[5].display_name | Chromatography |
| concepts[6].id | https://openalex.org/C185592680 |
| concepts[6].level | 0 |
| concepts[6].score | 0.23753899335861206 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[6].display_name | Chemistry |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.17574533820152283 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C151730666 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[8].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/test |
| keywords[0].score | 0.5874689221382141 |
| keywords[0].display_name | Test (biology) |
| keywords[1].id | https://openalex.org/keywords/sample |
| keywords[1].score | 0.5654444694519043 |
| keywords[1].display_name | Sample (material) |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.35901930928230286 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.33571144938468933 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.2909069061279297 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/chromatography |
| keywords[5].score | 0.2418903410434723 |
| keywords[5].display_name | Chromatography |
| keywords[6].id | https://openalex.org/keywords/chemistry |
| keywords[6].score | 0.23753899335861206 |
| keywords[6].display_name | Chemistry |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.17574533820152283 |
| keywords[7].display_name | Geology |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2110.15073 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2110.15073 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2110.15073 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5031343861 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3218-8613 |
| authorships[0].author.display_name | Antonin Schrab |
| authorships[0].countries | FR, GB |
| authorships[0].affiliations[0].raw_affiliation_string | University College of London [London] |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210156583, https://openalex.org/I45129253 |
| authorships[0].affiliations[1].raw_affiliation_string | Computer science department [University College London] |
| authorships[0].affiliations[2].raw_affiliation_string | MOdel for Data Analysis and Learning |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I1326498283 |
| authorships[0].affiliations[3].raw_affiliation_string | The Inria London Programme |
| authorships[0].institutions[0].id | https://openalex.org/I1326498283 |
| authorships[0].institutions[0].ror | https://ror.org/02kvxyf05 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1326498283 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Institut national de recherche en sciences et technologies du numérique |
| authorships[0].institutions[1].id | https://openalex.org/I4210156583 |
| authorships[0].institutions[1].ror | https://ror.org/05g1zjw44 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I4210091279, https://openalex.org/I4210156583, https://openalex.org/I4210159245 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Laboratoire d'Informatique de Paris-Nord |
| authorships[0].institutions[2].id | https://openalex.org/I45129253 |
| authorships[0].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[0].institutions[2].country_code | GB |
| authorships[0].institutions[2].display_name | University College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Antonin Schrab |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer science department [University College London], MOdel for Data Analysis and Learning, The Inria London Programme, University College of London [London] |
| authorships[1].author.id | https://openalex.org/A5017433036 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6608-613X |
| authorships[1].author.display_name | Ilmun Kim |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[1].affiliations[0].raw_affiliation_string | Yonsei University |
| authorships[1].institutions[0].id | https://openalex.org/I193775966 |
| authorships[1].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Yonsei University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ilmun Kim |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Yonsei University |
| authorships[2].author.id | https://openalex.org/A5002235074 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0857-9427 |
| authorships[2].author.display_name | Mélisande Albert |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I196454796 |
| authorships[2].affiliations[0].raw_affiliation_string | Institut National des Sciences Appliquées - Toulouse |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I84500057 |
| authorships[2].affiliations[1].raw_affiliation_string | Institut de Mathématiques de Toulouse UMR5219 |
| authorships[2].institutions[0].id | https://openalex.org/I196454796 |
| authorships[2].institutions[0].ror | https://ror.org/01h8pf755 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I196454796, https://openalex.org/I4412460029 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Institut National des Sciences Appliquées de Toulouse |
| authorships[2].institutions[1].id | https://openalex.org/I84500057 |
| authorships[2].institutions[1].ror | https://ror.org/014vp6c30 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I134560555, https://openalex.org/I196454796, https://openalex.org/I4210141950, https://openalex.org/I4210152422, https://openalex.org/I4412460029, https://openalex.org/I4412460145, https://openalex.org/I84500057 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Institut de Mathématiques de Toulouse |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mélisande Albert |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institut National des Sciences Appliquées - Toulouse, Institut de Mathématiques de Toulouse UMR5219 |
| authorships[3].author.id | https://openalex.org/A5025409837 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Béatrice Laurent |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I196454796 |
| authorships[3].affiliations[0].raw_affiliation_string | Institut National des Sciences Appliquées - Toulouse |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I84500057 |
| authorships[3].affiliations[1].raw_affiliation_string | Institut de Mathématiques de Toulouse UMR5219 |
| authorships[3].institutions[0].id | https://openalex.org/I196454796 |
| authorships[3].institutions[0].ror | https://ror.org/01h8pf755 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I196454796, https://openalex.org/I4412460029 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Institut National des Sciences Appliquées de Toulouse |
| authorships[3].institutions[1].id | https://openalex.org/I84500057 |
| authorships[3].institutions[1].ror | https://ror.org/014vp6c30 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I134560555, https://openalex.org/I196454796, https://openalex.org/I4210141950, https://openalex.org/I4210152422, https://openalex.org/I4412460029, https://openalex.org/I4412460145, https://openalex.org/I84500057 |
| authorships[3].institutions[1].country_code | FR |
| authorships[3].institutions[1].display_name | Institut de Mathématiques de Toulouse |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Béatrice Laurent |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institut National des Sciences Appliquées - Toulouse, Institut de Mathématiques de Toulouse UMR5219 |
| authorships[4].author.id | https://openalex.org/A5070312562 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1237-7430 |
| authorships[4].author.display_name | Benjamin Guedj |
| authorships[4].countries | FR, GB |
| authorships[4].affiliations[0].raw_affiliation_string | University College of London [London] |
| authorships[4].affiliations[1].raw_affiliation_string | MOdel for Data Analysis and Learning |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I1326498283 |
| authorships[4].affiliations[2].raw_affiliation_string | The Inria London Programme |
| authorships[4].affiliations[3].institution_ids | https://openalex.org/I4210156583, https://openalex.org/I45129253 |
| authorships[4].affiliations[3].raw_affiliation_string | Computer science department [University College London] |
| authorships[4].affiliations[4].institution_ids | https://openalex.org/I1326498283 |
| authorships[4].affiliations[4].raw_affiliation_string | Inria-CWI |
| authorships[4].institutions[0].id | https://openalex.org/I1326498283 |
| authorships[4].institutions[0].ror | https://ror.org/02kvxyf05 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1326498283 |
| authorships[4].institutions[0].country_code | FR |
| authorships[4].institutions[0].display_name | Institut national de recherche en sciences et technologies du numérique |
| authorships[4].institutions[1].id | https://openalex.org/I4210156583 |
| authorships[4].institutions[1].ror | https://ror.org/05g1zjw44 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I4210091279, https://openalex.org/I4210156583, https://openalex.org/I4210159245 |
| authorships[4].institutions[1].country_code | FR |
| authorships[4].institutions[1].display_name | Laboratoire d'Informatique de Paris-Nord |
| authorships[4].institutions[2].id | https://openalex.org/I45129253 |
| authorships[4].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[4].institutions[2].country_code | GB |
| authorships[4].institutions[2].display_name | University College London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Benjamin Guedj |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Computer science department [University College London], Inria-CWI, MOdel for Data Analysis and Learning, The Inria London Programme, University College of London [London] |
| authorships[5].author.id | https://openalex.org/A5004160420 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3169-7624 |
| authorships[5].author.display_name | Arthur Gretton |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210115172 |
| authorships[5].affiliations[0].raw_affiliation_string | Gatsby Computational Neuroscience Unit |
| authorships[5].institutions[0].id | https://openalex.org/I4210115172 |
| authorships[5].institutions[0].ror | https://ror.org/026ejyb70 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210115172 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | Oxford Centre for Computational Neuroscience |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Arthur Gretton |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Gatsby Computational Neuroscience Unit |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2110.15073 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MMD Aggregated Two-Sample Test |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2130043461, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2110.15073 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2110.15073 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2110.15073 |
| primary_location.id | pmh:oai:arXiv.org:2110.15073 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2110.15073 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2110.15073 |
| publication_date | 2021-10-28 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2002190927, https://openalex.org/W1591122161, https://openalex.org/W2065230098, https://openalex.org/W2110097068, https://openalex.org/W3124838210, https://openalex.org/W2261750843, https://openalex.org/W2117084079, https://openalex.org/W2964099863, https://openalex.org/W2148446728, https://openalex.org/W1750390717, https://openalex.org/W2971752800, https://openalex.org/W3101094987, https://openalex.org/W2074466695, https://openalex.org/W2025533349, https://openalex.org/W2798167046, https://openalex.org/W3007508788, https://openalex.org/W2328111639, https://openalex.org/W1988645907, https://openalex.org/W2081874429, https://openalex.org/W2100600008, https://openalex.org/W1986280275, https://openalex.org/W2970964708, https://openalex.org/W2052448030, https://openalex.org/W1544839292, https://openalex.org/W3013156811, https://openalex.org/W2166481425, https://openalex.org/W2441221256, https://openalex.org/W3099470970, https://openalex.org/W2003562164, https://openalex.org/W2914507821, https://openalex.org/W2562221994, https://openalex.org/W1638081485, https://openalex.org/W2125865219, https://openalex.org/W2037884882, https://openalex.org/W2008941703, https://openalex.org/W2099973661, https://openalex.org/W2099932489, https://openalex.org/W2963556932 |
| referenced_works_count | 38 |
| abstract_inverted_index.I | 47 |
| abstract_inverted_index.a | 16, 27, 95, 159, 198 |
| abstract_inverted_index.In | 106 |
| abstract_inverted_index.To | 123 |
| abstract_inverted_index.We | 0, 38, 172, 213, 225 |
| abstract_inverted_index.an | 21, 129, 189, 221 |
| abstract_inverted_index.as | 62, 168, 259 |
| abstract_inverted_index.be | 53, 121 |
| abstract_inverted_index.in | 56, 80, 83, 158 |
| abstract_inverted_index.is | 109, 134 |
| abstract_inverted_index.it | 51, 63 |
| abstract_inverted_index.of | 45, 90, 102, 147, 161, 201, 218, 223, 252, 257 |
| abstract_inverted_index.on | 9, 98, 235, 244 |
| abstract_inverted_index.or | 26, 164 |
| abstract_inverted_index.to | 33, 136, 188, 197 |
| abstract_inverted_index.up | 187 |
| abstract_inverted_index.we | 19, 86, 127 |
| abstract_inverted_index.MMD | 69, 92, 115 |
| abstract_inverted_index.Our | 193 |
| abstract_inverted_index.The | 140 |
| abstract_inverted_index.and | 180, 242 |
| abstract_inverted_index.any | 206 |
| abstract_inverted_index.are | 195 |
| abstract_inverted_index.but | 203 |
| abstract_inverted_index.can | 52 |
| abstract_inverted_index.for | 15, 205 |
| abstract_inverted_index.our | 91 |
| abstract_inverted_index.the | 35, 78, 99, 103, 113, 137, 145, 169, 177, 182, 238, 250, 255 |
| abstract_inverted_index.two | 2, 30 |
| abstract_inverted_index.use | 256 |
| abstract_inverted_index.Mean | 11 |
| abstract_inverted_index.When | 77 |
| abstract_inverted_index.and, | 111 |
| abstract_inverted_index.even | 55 |
| abstract_inverted_index.from | 67 |
| abstract_inverted_index.hold | 204 |
| abstract_inverted_index.lies | 82 |
| abstract_inverted_index.loss | 160 |
| abstract_inverted_index.only | 72 |
| abstract_inverted_index.over | 144 |
| abstract_inverted_index.rate | 184 |
| abstract_inverted_index.such | 167 |
| abstract_inverted_index.test | 36, 42, 74, 93, 116, 141, 162 |
| abstract_inverted_index.that | 40, 174, 227 |
| abstract_inverted_index.this | 41, 118, 125 |
| abstract_inverted_index.type | 46, 200 |
| abstract_inverted_index.wild | 28 |
| abstract_inverted_index.with | 58, 94, 117 |
| abstract_inverted_index.ball, | 85 |
| abstract_inverted_index.ball. | 105 |
| abstract_inverted_index.based | 8 |
| abstract_inverted_index.error | 48 |
| abstract_inverted_index.fixed | 17 |
| abstract_inverted_index.level | 75, 178 |
| abstract_inverted_index.novel | 3 |
| abstract_inverted_index.power | 142, 251 |
| abstract_inverted_index.prove | 39, 87, 173 |
| abstract_inverted_index.sizes | 61 |
| abstract_inverted_index.small | 59 |
| abstract_inverted_index.term. | 192 |
| abstract_inverted_index.tests | 7, 70, 234, 253 |
| abstract_inverted_index.that, | 243 |
| abstract_inverted_index.used, | 149 |
| abstract_inverted_index.used. | 122 |
| abstract_inverted_index.using | 23, 220 |
| abstract_inverted_index.which | 65, 71, 133 |
| abstract_inverted_index.(MMD). | 13 |
| abstract_inverted_index.(which | 156 |
| abstract_inverted_index.First, | 14 |
| abstract_inverted_index.Hence, | 50 |
| abstract_inverted_index.MMDAgg | 175, 219, 228, 247 |
| abstract_inverted_index.balls, | 186 |
| abstract_inverted_index.cannot | 120 |
| abstract_inverted_index.either | 24 |
| abstract_inverted_index.hence, | 112 |
| abstract_inverted_index.issue, | 126 |
| abstract_inverted_index.kernel | 6, 154 |
| abstract_inverted_index.median | 170 |
| abstract_inverted_index.neural | 260 |
| abstract_inverted_index.sample | 60 |
| abstract_inverted_index.MMDAgg, | 132 |
| abstract_inverted_index.Sobolev | 104, 239 |
| abstract_inverted_index.choices | 166 |
| abstract_inverted_index.closely | 248 |
| abstract_inverted_index.differs | 66 |
| abstract_inverted_index.kernel, | 18, 202 |
| abstract_inverted_index.kernels | 148 |
| abstract_inverted_index.matches | 249 |
| abstract_inverted_index.minimax | 88, 183 |
| abstract_inverted_index.optimal | 114 |
| abstract_inverted_index.popular | 31 |
| abstract_inverted_index.power), | 163 |
| abstract_inverted_index.product | 207 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.provide | 214 |
| abstract_inverted_index.results | 157 |
| abstract_inverted_index.unknown | 110 |
| abstract_inverted_index.without | 150 |
| abstract_inverted_index.achieves | 181 |
| abstract_inverted_index.adaptive | 135 |
| abstract_inverted_index.held-out | 152 |
| abstract_inverted_index.iterated | 190 |
| abstract_inverted_index.kernels. | 212 |
| abstract_inverted_index.overcome | 124 |
| abstract_inverted_index.previous | 68 |
| abstract_inverted_index.settings | 57 |
| abstract_inverted_index.specific | 199 |
| abstract_inverted_index.MMD-based | 232 |
| abstract_inverted_index.MMD\ntest | 22 |
| abstract_inverted_index.construct | 20, 128 |
| abstract_inverted_index.data\nfor | 153 |
| abstract_inverted_index.densities | 81 |
| abstract_inverted_index.depending | 97 |
| abstract_inverted_index.determine | 34 |
| abstract_inverted_index.invariant | 210 |
| abstract_inverted_index.parameter | 101, 108 |
| abstract_inverted_index.requiring | 151 |
| abstract_inverted_index.selection | 155 |
| abstract_inverted_index.synthetic | 236 |
| abstract_inverted_index.a\nSobolev | 84 |
| abstract_inverted_index.aggregated | 130 |
| abstract_inverted_index.bootstrap, | 29 |
| abstract_inverted_index.collection | 146 |
| abstract_inverted_index.difference | 79 |
| abstract_inverted_index.guarantees | 194 |
| abstract_inverted_index.heuristic. | 171 |
| abstract_inverted_index.leveraging | 254 |
| abstract_inverted_index.optimality | 89 |
| abstract_inverted_index.parameter. | 139 |
| abstract_inverted_index.real-world | 245 |
| abstract_inverted_index.smoothness | 100, 138, 240 |
| abstract_inverted_index.threshold. | 37 |
| abstract_inverted_index.two-sample | 5, 233 |
| abstract_inverted_index.Discrepancy | 12 |
| abstract_inverted_index.assumption, | 241 |
| abstract_inverted_index.bandwidths. | 224 |
| abstract_inverted_index.demonstrate | 226 |
| abstract_inverted_index.logarithmic | 191 |
| abstract_inverted_index.networks.\n | 261 |
| abstract_inverted_index.probability | 44 |
| abstract_inverted_index.translation | 209 |
| abstract_inverted_index.image\ndata, | 246 |
| abstract_inverted_index.models\nsuch | 258 |
| abstract_inverted_index.permutations | 25 |
| abstract_inverted_index.the\nMaximum | 10 |
| abstract_inverted_index.controls\nthe | 43 |
| abstract_inverted_index.is\nmaximised | 143 |
| abstract_inverted_index.nonparametric | 4 |
| abstract_inverted_index.over\nSobolev | 185 |
| abstract_inverted_index.significantly | 229 |
| abstract_inverted_index.test,\ncalled | 131 |
| abstract_inverted_index.characteristic | 211 |
| abstract_inverted_index.implementation | 217 |
| abstract_inverted_index.parameter-free | 216 |
| abstract_inverted_index.used\nreliably | 54 |
| abstract_inverted_index.asymptotically. | 76 |
| abstract_inverted_index.not\nrestricted | 196 |
| abstract_inverted_index.practice,\nthis | 107 |
| abstract_inverted_index.still\ncontrols | 176 |
| abstract_inverted_index.a\nuser-friendly | 215 |
| abstract_inverted_index.data\nsatisfying | 237 |
| abstract_inverted_index.specific\nkernel | 96 |
| abstract_inverted_index.state-of-the-art | 231 |
| abstract_inverted_index.arbitrary\nkernel | 165 |
| abstract_inverted_index.guarantee\ncorrect | 73 |
| abstract_inverted_index.particular\nkernel | 119 |
| abstract_inverted_index.non-asymptotically, | 179 |
| abstract_inverted_index.non-asymptotically. | 49 |
| abstract_inverted_index.of\none-dimensional | 208 |
| abstract_inverted_index.adaptive\ncollection | 222 |
| abstract_inverted_index.numerical\nprocedures | 32 |
| abstract_inverted_index.outperforms\nalternative | 230 |
| abstract_inverted_index.remains\nwell-calibrated, | 64 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.15733509 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |