MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.11591/ijece.v10i1.pp196-201
Region-based color image segmentation is elementary steps in image processing and computer vision. Color image segmentation is a region growing approach in which RGB color image is divided into the different cluster based on their pixel properties. The region-based color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, in which three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper, L*a*b color space conversion has been used to reduce the one dimension and geometrically it converts in the array hence the further one dimension has been reduced. This paper introduced an improved algorithm MMFO (Modified Moth Flame Optimization) Algorithm for RGB color image Segmentation which is based on bio-inspired techniques for color image segmentation. The simulation results of MMFO for region based color image segmentation are performed better as compared to PSO and GA, in terms of computation times for all the images. The experiment results of this method gives clear segments based on the different color and the different no. of clusters is used during the segmentation process.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijece.v10i1.pp196-201
- http://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853
- OA Status
- diamond
- Cited By
- 14
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2970661525
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2970661525Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijece.v10i1.pp196-201Digital Object Identifier
- Title
-
MMFO: modified moth flame optimization algorithm for region based RGB color image segmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-29Full publication date if available
- Authors
-
Varshali Jaiswal, Varsha Sharma, Sunita VarmaList of authors in order
- Landing page
-
https://doi.org/10.11591/ijece.v10i1.pp196-201Publisher landing page
- PDF URL
-
https://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853Direct OA link when available
- Concepts
-
Artificial intelligence, RGB color model, Color image, Computer vision, Image segmentation, Color histogram, Color space, Computer science, Segmentation-based object categorization, Scale-space segmentation, Region growing, Color balance, RGB color space, Segmentation, Pattern recognition (psychology), Mathematics, Image processing, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 3, 2022: 1, 2021: 8, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2970661525 |
|---|---|
| doi | https://doi.org/10.11591/ijece.v10i1.pp196-201 |
| ids.doi | https://doi.org/10.11591/ijece.v10i1.pp196-201 |
| ids.mag | 2970661525 |
| ids.openalex | https://openalex.org/W2970661525 |
| fwci | 1.53617746 |
| type | article |
| title | MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation |
| biblio.issue | 1 |
| biblio.volume | 10 |
| biblio.last_page | 196 |
| biblio.first_page | 196 |
| topics[0].id | https://openalex.org/T10100 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.994700014591217 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Metaheuristic Optimization Algorithms Research |
| topics[1].id | https://openalex.org/T11019 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9375 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Enhancement Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7370737195014954 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C82990744 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6985963582992554 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[1].display_name | RGB color model |
| concepts[2].id | https://openalex.org/C142616399 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6569452285766602 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5148604 |
| concepts[2].display_name | Color image |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.654198169708252 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C124504099 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6526339054107666 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[4].display_name | Image segmentation |
| concepts[5].id | https://openalex.org/C12043971 |
| concepts[5].level | 5 |
| concepts[5].score | 0.6062546372413635 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2636542 |
| concepts[5].display_name | Color histogram |
| concepts[6].id | https://openalex.org/C2961294 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5880833268165588 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q166863 |
| concepts[6].display_name | Color space |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5426886081695557 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C25694479 |
| concepts[8].level | 5 |
| concepts[8].score | 0.5042334794998169 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7446278 |
| concepts[8].display_name | Segmentation-based object categorization |
| concepts[9].id | https://openalex.org/C65885262 |
| concepts[9].level | 4 |
| concepts[9].score | 0.49475520849227905 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7429708 |
| concepts[9].display_name | Scale-space segmentation |
| concepts[10].id | https://openalex.org/C206824153 |
| concepts[10].level | 5 |
| concepts[10].score | 0.4727286398410797 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1169834 |
| concepts[10].display_name | Region growing |
| concepts[11].id | https://openalex.org/C159784718 |
| concepts[11].level | 5 |
| concepts[11].score | 0.46182140707969666 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q182571 |
| concepts[11].display_name | Color balance |
| concepts[12].id | https://openalex.org/C84216515 |
| concepts[12].level | 5 |
| concepts[12].score | 0.4197004437446594 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q375677 |
| concepts[12].display_name | RGB color space |
| concepts[13].id | https://openalex.org/C89600930 |
| concepts[13].level | 2 |
| concepts[13].score | 0.38528794050216675 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[13].display_name | Segmentation |
| concepts[14].id | https://openalex.org/C153180895 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3369186520576477 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[14].display_name | Pattern recognition (psychology) |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.3200450539588928 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C9417928 |
| concepts[16].level | 3 |
| concepts[16].score | 0.31010037660598755 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[16].display_name | Image processing |
| concepts[17].id | https://openalex.org/C115961682 |
| concepts[17].level | 2 |
| concepts[17].score | 0.25516581535339355 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[17].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7370737195014954 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/rgb-color-model |
| keywords[1].score | 0.6985963582992554 |
| keywords[1].display_name | RGB color model |
| keywords[2].id | https://openalex.org/keywords/color-image |
| keywords[2].score | 0.6569452285766602 |
| keywords[2].display_name | Color image |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.654198169708252 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/image-segmentation |
| keywords[4].score | 0.6526339054107666 |
| keywords[4].display_name | Image segmentation |
| keywords[5].id | https://openalex.org/keywords/color-histogram |
| keywords[5].score | 0.6062546372413635 |
| keywords[5].display_name | Color histogram |
| keywords[6].id | https://openalex.org/keywords/color-space |
| keywords[6].score | 0.5880833268165588 |
| keywords[6].display_name | Color space |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.5426886081695557 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/segmentation-based-object-categorization |
| keywords[8].score | 0.5042334794998169 |
| keywords[8].display_name | Segmentation-based object categorization |
| keywords[9].id | https://openalex.org/keywords/scale-space-segmentation |
| keywords[9].score | 0.49475520849227905 |
| keywords[9].display_name | Scale-space segmentation |
| keywords[10].id | https://openalex.org/keywords/region-growing |
| keywords[10].score | 0.4727286398410797 |
| keywords[10].display_name | Region growing |
| keywords[11].id | https://openalex.org/keywords/color-balance |
| keywords[11].score | 0.46182140707969666 |
| keywords[11].display_name | Color balance |
| keywords[12].id | https://openalex.org/keywords/rgb-color-space |
| keywords[12].score | 0.4197004437446594 |
| keywords[12].display_name | RGB color space |
| keywords[13].id | https://openalex.org/keywords/segmentation |
| keywords[13].score | 0.38528794050216675 |
| keywords[13].display_name | Segmentation |
| keywords[14].id | https://openalex.org/keywords/pattern-recognition |
| keywords[14].score | 0.3369186520576477 |
| keywords[14].display_name | Pattern recognition (psychology) |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.3200450539588928 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/image-processing |
| keywords[16].score | 0.31010037660598755 |
| keywords[16].display_name | Image processing |
| keywords[17].id | https://openalex.org/keywords/image |
| keywords[17].score | 0.25516581535339355 |
| keywords[17].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.11591/ijece.v10i1.pp196-201 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764532672 |
| locations[0].source.issn | 2088-8708 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2088-8708 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Electrical and Computer Engineering (IJECE) |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | http://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijece.v10i1.pp196-201 |
| locations[1].id | pmh:oai:zenodo.org:4082182 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Electrical and Computer Engineering (IJECE), 10(1), 196-201, (2020-02-01) |
| locations[1].landing_page_url | https://zenodo.org/record/4082182 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5048214408 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5240-271X |
| authorships[0].author.display_name | Varshali Jaiswal |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I196622127 |
| authorships[0].affiliations[0].raw_affiliation_string | University Teaching Department Rajiv Gandhi Proudyogiki Vishwavidyalaya(State Technological University of Madhya Pradesh) |
| authorships[0].institutions[0].id | https://openalex.org/I196622127 |
| authorships[0].institutions[0].ror | https://ror.org/03xmje391 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I196622127 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Rajiv Gandhi Technical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Varshali Jaiswal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University Teaching Department Rajiv Gandhi Proudyogiki Vishwavidyalaya(State Technological University of Madhya Pradesh) |
| authorships[1].author.id | https://openalex.org/A5074514195 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6760-6416 |
| authorships[1].author.display_name | Varsha Sharma |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I196622127 |
| authorships[1].affiliations[0].raw_affiliation_string | University Teaching Department Rajiv Gandhi Proudyogiki Vishwavidyalaya(State Technological University of Madhya Pradesh) |
| authorships[1].institutions[0].id | https://openalex.org/I196622127 |
| authorships[1].institutions[0].ror | https://ror.org/03xmje391 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I196622127 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Rajiv Gandhi Technical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Varsha Sharma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University Teaching Department Rajiv Gandhi Proudyogiki Vishwavidyalaya(State Technological University of Madhya Pradesh) |
| authorships[2].author.id | https://openalex.org/A5054362471 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0431-2891 |
| authorships[2].author.display_name | Sunita Varma |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I196622127 |
| authorships[2].affiliations[0].raw_affiliation_string | Rajiv Gandhi Proudyogiki Vishwavidyalaya(State Technological University of Madhya Pradesh) |
| authorships[2].institutions[0].id | https://openalex.org/I196622127 |
| authorships[2].institutions[0].ror | https://ror.org/03xmje391 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I196622127 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Rajiv Gandhi Technical University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sunita Varma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Rajiv Gandhi Proudyogiki Vishwavidyalaya(State Technological University of Madhya Pradesh) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10100 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.994700014591217 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Metaheuristic Optimization Algorithms Research |
| related_works | https://openalex.org/W2120904863, https://openalex.org/W2091106311, https://openalex.org/W2589042415, https://openalex.org/W1806074025, https://openalex.org/W1981206111, https://openalex.org/W2064318651, https://openalex.org/W2294493990, https://openalex.org/W2117507819, https://openalex.org/W2407615025, https://openalex.org/W2221219752 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.11591/ijece.v10i1.pp196-201 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764532672 |
| best_oa_location.source.issn | 2088-8708 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2088-8708 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Electrical and Computer Engineering (IJECE) |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | http://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijece.v10i1.pp196-201 |
| primary_location.id | doi:10.11591/ijece.v10i1.pp196-201 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764532672 |
| primary_location.source.issn | 2088-8708 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2088-8708 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Electrical and Computer Engineering (IJECE) |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | http://ijece.iaescore.com/index.php/IJECE/article/download/15775/13853 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijece.v10i1.pp196-201 |
| publication_date | 2019-10-29 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2540809863, https://openalex.org/W2327885123, https://openalex.org/W2143681681, https://openalex.org/W6679820939, https://openalex.org/W2167077256, https://openalex.org/W2152850676, https://openalex.org/W2564924834, https://openalex.org/W2074317748, https://openalex.org/W2793980114, https://openalex.org/W2175650166, https://openalex.org/W2022456890, https://openalex.org/W2093363711, https://openalex.org/W2039862418, https://openalex.org/W2113490322, https://openalex.org/W6605932951, https://openalex.org/W2126687887, https://openalex.org/W2605810061, https://openalex.org/W883434633, https://openalex.org/W2102236449, https://openalex.org/W2547726735, https://openalex.org/W3046865206, https://openalex.org/W2133496072, https://openalex.org/W144777632, https://openalex.org/W4288349928, https://openalex.org/W2161981399 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 18 |
| abstract_inverted_index.In | 74 |
| abstract_inverted_index.an | 107 |
| abstract_inverted_index.as | 145 |
| abstract_inverted_index.in | 8, 22, 54, 57, 61, 67, 93, 151 |
| abstract_inverted_index.is | 5, 17, 27, 52, 122, 180 |
| abstract_inverted_index.it | 91 |
| abstract_inverted_index.of | 47, 134, 153, 163, 178 |
| abstract_inverted_index.on | 34, 124, 170 |
| abstract_inverted_index.to | 84, 147 |
| abstract_inverted_index.GA, | 150 |
| abstract_inverted_index.PSO | 148 |
| abstract_inverted_index.RGB | 24, 117 |
| abstract_inverted_index.The | 38, 49, 131, 160 |
| abstract_inverted_index.all | 157 |
| abstract_inverted_index.and | 11, 64, 71, 89, 149, 174 |
| abstract_inverted_index.are | 142 |
| abstract_inverted_index.for | 116, 127, 136, 156 |
| abstract_inverted_index.has | 43, 81, 101 |
| abstract_inverted_index.no. | 177 |
| abstract_inverted_index.one | 87, 99 |
| abstract_inverted_index.the | 30, 45, 86, 94, 97, 158, 171, 175, 183 |
| abstract_inverted_index.two | 65 |
| abstract_inverted_index.MMFO | 110, 135 |
| abstract_inverted_index.Moth | 112 |
| abstract_inverted_index.This | 104 |
| abstract_inverted_index.been | 82, 102 |
| abstract_inverted_index.into | 29 |
| abstract_inverted_index.this | 75, 164 |
| abstract_inverted_index.used | 83, 181 |
| abstract_inverted_index.(RGB) | 63 |
| abstract_inverted_index.Color | 14 |
| abstract_inverted_index.Flame | 113 |
| abstract_inverted_index.L*a*b | 77 |
| abstract_inverted_index.array | 95 |
| abstract_inverted_index.based | 33, 123, 138, 169 |
| abstract_inverted_index.clear | 167 |
| abstract_inverted_index.color | 2, 25, 40, 50, 62, 78, 118, 128, 139, 173 |
| abstract_inverted_index.faced | 44 |
| abstract_inverted_index.gives | 166 |
| abstract_inverted_index.hence | 96 |
| abstract_inverted_index.image | 3, 9, 15, 26, 41, 51, 119, 129, 140 |
| abstract_inverted_index.layer | 70 |
| abstract_inverted_index.paper | 105 |
| abstract_inverted_index.pixel | 36 |
| abstract_inverted_index.space | 79 |
| abstract_inverted_index.steps | 7 |
| abstract_inverted_index.terms | 152 |
| abstract_inverted_index.their | 35 |
| abstract_inverted_index.three | 59 |
| abstract_inverted_index.times | 155 |
| abstract_inverted_index.which | 23, 58, 121 |
| abstract_inverted_index.better | 144 |
| abstract_inverted_index.during | 182 |
| abstract_inverted_index.method | 165 |
| abstract_inverted_index.paper, | 76 |
| abstract_inverted_index.reduce | 85 |
| abstract_inverted_index.region | 19, 137 |
| abstract_inverted_index.cluster | 32 |
| abstract_inverted_index.divided | 28 |
| abstract_inverted_index.further | 98 |
| abstract_inverted_index.growing | 20 |
| abstract_inverted_index.images. | 159 |
| abstract_inverted_index.layer). | 73 |
| abstract_inverted_index.problem | 46 |
| abstract_inverted_index.results | 133, 162 |
| abstract_inverted_index.vision. | 13 |
| abstract_inverted_index.<span | 0 |
| abstract_inverted_index.approach | 21 |
| abstract_inverted_index.clusters | 179 |
| abstract_inverted_index.compared | 146 |
| abstract_inverted_index.computer | 12 |
| abstract_inverted_index.converts | 92 |
| abstract_inverted_index.geometry | 68 |
| abstract_inverted_index.improved | 108 |
| abstract_inverted_index.reduced. | 103 |
| abstract_inverted_index.segments | 168 |
| abstract_inverted_index.(Modified | 111 |
| abstract_inverted_index.Algorithm | 115 |
| abstract_inverted_index.algorithm | 109 |
| abstract_inverted_index.different | 31, 172, 176 |
| abstract_inverted_index.dimension | 88, 100 |
| abstract_inverted_index.performed | 143 |
| abstract_inverted_index.problems, | 56 |
| abstract_inverted_index.considered | 53 |
| abstract_inverted_index.conversion | 80 |
| abstract_inverted_index.dimensions | 60, 66 |
| abstract_inverted_index.elementary | 6 |
| abstract_inverted_index.experiment | 161 |
| abstract_inverted_index.introduced | 106 |
| abstract_inverted_index.processing | 10 |
| abstract_inverted_index.simulation | 132 |
| abstract_inverted_index.techniques | 126 |
| abstract_inverted_index.(luminosity | 69 |
| abstract_inverted_index.computation | 154 |
| abstract_inverted_index.properties. | 37 |
| abstract_inverted_index.Segmentation | 120 |
| abstract_inverted_index.bio-inspired | 125 |
| abstract_inverted_index.chromaticity | 72 |
| abstract_inverted_index.region-based | 39 |
| abstract_inverted_index.segmentation | 4, 16, 42, 141, 184 |
| abstract_inverted_index.Optimization) | 114 |
| abstract_inverted_index.geometrically | 90 |
| abstract_inverted_index.segmentation. | 130 |
| abstract_inverted_index.five-dimensional | 55 |
| abstract_inverted_index.multidimensionality. | 48 |
| abstract_inverted_index.process.</span> | 185 |
| abstract_inverted_index.lang="EN-US">Region-based | 1 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.86772773 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |