MMG-Based Motion Segmentation and Recognition of Upper Limb Rehabilitation Using the YOLOv5s-SE Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25072257
Mechanomyography (MMG) is a non-invasive technique for assessing muscle activity by measuring mechanical signals, offering high sensitivity and real-time monitoring capabilities, and it has many applications in rehabilitation training. Traditional MMG-based motion recognition relies on feature extraction and classifier training, which require segmenting continuous actions, leading to challenges in real-time performance and segmentation accuracy. Therefore, this paper proposes an innovative method for the real-time segmentation and classification of upper limb rehabilitation actions based on the You Only Look Once (YOLO) algorithm, integrating the Squeeze-and-Excitation (SE) attention mechanism to enhance the model’s performance. In this paper, the collected MMG signals were transformed into one-dimensional time-series images. After image processing, the training set and test set were divided for the training and testing of the YOLOv5s-SE model. The results demonstrated that the proposed model effectively segmented isolated and continuous MMG motions while simultaneously performing real-time motion category prediction and outputting results. In segmentation tasks, the base YOLOv5s model achieved 97.9% precision and 98.0% recall, while the improved YOLOv5s-SE model increased precision to 98.7% (+0.8%) and recall to 98.3% (+0.3%). Additionally, the model demonstrated exceptional accuracy in predicting motion categories, achieving an accuracy of 98.9%. This method realizes the automatic segmentation of time-domain motions, avoids the limitations of manual parameter adjustment in traditional methods, and simultaneously enhances the real-time performance of MMG motion recognition through image processing, providing an effective solution for motion analysis in wearable devices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25072257
- OA Status
- gold
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409145336
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409145336Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25072257Digital Object Identifier
- Title
-
MMG-Based Motion Segmentation and Recognition of Upper Limb Rehabilitation Using the YOLOv5s-SEWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-03Full publication date if available
- Authors
-
Gangsheng Cao, Jian Ji, Qing Wu, Chunming XiaList of authors in order
- Landing page
-
https://doi.org/10.3390/s25072257Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/s25072257Direct OA link when available
- Concepts
-
Segmentation, Rehabilitation, Motion (physics), Computer science, Physical medicine and rehabilitation, Artificial intelligence, Computer vision, Medicine, Physical therapyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409145336 |
|---|---|
| doi | https://doi.org/10.3390/s25072257 |
| ids.doi | https://doi.org/10.3390/s25072257 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40218771 |
| ids.openalex | https://openalex.org/W4409145336 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000502 |
| mesh[1].descriptor_ui | D034941 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | physiology |
| mesh[1].descriptor_name | Upper Extremity |
| mesh[2].qualifier_ui | Q000503 |
| mesh[2].descriptor_ui | D034941 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | physiopathology |
| mesh[2].descriptor_name | Upper Extremity |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D009038 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Motion |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D004576 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Electromyography |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000502 |
| mesh[7].descriptor_ui | D034941 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | physiology |
| mesh[7].descriptor_name | Upper Extremity |
| mesh[8].qualifier_ui | Q000503 |
| mesh[8].descriptor_ui | D034941 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | physiopathology |
| mesh[8].descriptor_name | Upper Extremity |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D009038 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Motion |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D004576 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Electromyography |
| type | article |
| title | MMG-Based Motion Segmentation and Recognition of Upper Limb Rehabilitation Using the YOLOv5s-SE |
| biblio.issue | 7 |
| biblio.volume | 25 |
| biblio.last_page | 2257 |
| biblio.first_page | 2257 |
| topics[0].id | https://openalex.org/T10510 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2742 |
| topics[0].subfield.display_name | Rehabilitation |
| topics[0].display_name | Stroke Rehabilitation and Recovery |
| topics[1].id | https://openalex.org/T10784 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Muscle activation and electromyography studies |
| topics[2].id | https://openalex.org/T11398 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9904000163078308 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1709 |
| topics[2].subfield.display_name | Human-Computer Interaction |
| topics[2].display_name | Hand Gesture Recognition Systems |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.603269636631012 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C2778818304 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5906344056129456 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1819478 |
| concepts[1].display_name | Rehabilitation |
| concepts[2].id | https://openalex.org/C104114177 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5539370179176331 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[2].display_name | Motion (physics) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48740580677986145 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C99508421 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48189812898635864 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[4].display_name | Physical medicine and rehabilitation |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4777359366416931 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3725437819957733 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.23983880877494812 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C1862650 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1543131172657013 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q186005 |
| concepts[8].display_name | Physical therapy |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.603269636631012 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/rehabilitation |
| keywords[1].score | 0.5906344056129456 |
| keywords[1].display_name | Rehabilitation |
| keywords[2].id | https://openalex.org/keywords/motion |
| keywords[2].score | 0.5539370179176331 |
| keywords[2].display_name | Motion (physics) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48740580677986145 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[4].score | 0.48189812898635864 |
| keywords[4].display_name | Physical medicine and rehabilitation |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4777359366416931 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.3725437819957733 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.23983880877494812 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/physical-therapy |
| keywords[8].score | 0.1543131172657013 |
| keywords[8].display_name | Physical therapy |
| language | en |
| locations[0].id | doi:10.3390/s25072257 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25072257 |
| locations[1].id | pmid:40218771 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40218771 |
| locations[2].id | pmh:oai:doaj.org/article:0123fabff95f44e0920e61555413e01c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 7, p 2257 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/0123fabff95f44e0920e61555413e01c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11990975 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11990975 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5000435339 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7937-4977 |
| authorships[0].author.display_name | Gangsheng Cao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
| authorships[0].institutions[0].id | https://openalex.org/I143593769 |
| authorships[0].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | East China University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gangsheng Cao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
| authorships[1].author.id | https://openalex.org/A5100613666 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9870-4038 |
| authorships[1].author.display_name | Jian Ji |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
| authorships[1].institutions[0].id | https://openalex.org/I143593769 |
| authorships[1].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | East China University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shen Jia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
| authorships[2].author.id | https://openalex.org/A5109532026 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qing Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
| authorships[2].institutions[0].id | https://openalex.org/I143593769 |
| authorships[2].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | East China University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qing Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
| authorships[3].author.id | https://openalex.org/A5089792666 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0227-3558 |
| authorships[3].author.display_name | Chunming Xia |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141962983 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I143593769 |
| authorships[3].affiliations[1].raw_affiliation_string | School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
| authorships[3].institutions[0].id | https://openalex.org/I143593769 |
| authorships[3].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | East China University of Science and Technology |
| authorships[3].institutions[1].id | https://openalex.org/I141962983 |
| authorships[3].institutions[1].ror | https://ror.org/0557b9y08 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I141962983 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Shanghai University of Engineering Science |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chunming Xia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/s25072257 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MMG-Based Motion Segmentation and Recognition of Upper Limb Rehabilitation Using the YOLOv5s-SE |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10510 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2742 |
| primary_topic.subfield.display_name | Rehabilitation |
| primary_topic.display_name | Stroke Rehabilitation and Recovery |
| related_works | https://openalex.org/W2065866188, https://openalex.org/W2468580946, https://openalex.org/W2064410155, https://openalex.org/W2331071954, https://openalex.org/W2360512056, https://openalex.org/W4289519383, https://openalex.org/W291986995, https://openalex.org/W2403685834, https://openalex.org/W2403558059, https://openalex.org/W2258092894 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25072257 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25072257 |
| primary_location.id | doi:10.3390/s25072257 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25072257 |
| publication_date | 2025-04-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3135957997, https://openalex.org/W2946772588, https://openalex.org/W2736828325, https://openalex.org/W4404417683, https://openalex.org/W4392405786, https://openalex.org/W4362597791, https://openalex.org/W4390231652, https://openalex.org/W6853626967, https://openalex.org/W3011014576, https://openalex.org/W4385070753, https://openalex.org/W4206217267, https://openalex.org/W2915722752, https://openalex.org/W3094862970, https://openalex.org/W4385577799, https://openalex.org/W4391589169, https://openalex.org/W3097826939, https://openalex.org/W2889849019, https://openalex.org/W2419215018, https://openalex.org/W3045212151, https://openalex.org/W4200281780, https://openalex.org/W6775952371, https://openalex.org/W3026120157, https://openalex.org/W4402643761, https://openalex.org/W3081867518, https://openalex.org/W3161051405, https://openalex.org/W4205357615, https://openalex.org/W4382059335, https://openalex.org/W4385495695, https://openalex.org/W3217005998, https://openalex.org/W2037227137, https://openalex.org/W4405455096, https://openalex.org/W4382119223, https://openalex.org/W3015935865 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.In | 92, 149 |
| abstract_inverted_index.an | 58, 188, 225 |
| abstract_inverted_index.by | 10 |
| abstract_inverted_index.in | 26, 48, 183, 208, 231 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.it | 22 |
| abstract_inverted_index.of | 67, 121, 190, 198, 204, 217 |
| abstract_inverted_index.on | 34, 73 |
| abstract_inverted_index.to | 46, 87, 169, 174 |
| abstract_inverted_index.MMG | 97, 137, 218 |
| abstract_inverted_index.The | 125 |
| abstract_inverted_index.You | 75 |
| abstract_inverted_index.and | 17, 21, 37, 51, 65, 111, 119, 135, 146, 159, 172, 211 |
| abstract_inverted_index.for | 6, 61, 116, 228 |
| abstract_inverted_index.has | 23 |
| abstract_inverted_index.set | 110, 113 |
| abstract_inverted_index.the | 62, 74, 82, 89, 95, 108, 117, 122, 129, 152, 163, 178, 195, 202, 214 |
| abstract_inverted_index.(SE) | 84 |
| abstract_inverted_index.Look | 77 |
| abstract_inverted_index.Once | 78 |
| abstract_inverted_index.Only | 76 |
| abstract_inverted_index.This | 192 |
| abstract_inverted_index.base | 153 |
| abstract_inverted_index.high | 15 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.limb | 69 |
| abstract_inverted_index.many | 24 |
| abstract_inverted_index.test | 112 |
| abstract_inverted_index.that | 128 |
| abstract_inverted_index.this | 55, 93 |
| abstract_inverted_index.were | 99, 114 |
| abstract_inverted_index.(MMG) | 1 |
| abstract_inverted_index.97.9% | 157 |
| abstract_inverted_index.98.0% | 160 |
| abstract_inverted_index.98.3% | 175 |
| abstract_inverted_index.98.7% | 170 |
| abstract_inverted_index.After | 105 |
| abstract_inverted_index.based | 72 |
| abstract_inverted_index.image | 106, 222 |
| abstract_inverted_index.model | 131, 155, 166, 179 |
| abstract_inverted_index.paper | 56 |
| abstract_inverted_index.upper | 68 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.while | 139, 162 |
| abstract_inverted_index.(YOLO) | 79 |
| abstract_inverted_index.98.9%. | 191 |
| abstract_inverted_index.avoids | 201 |
| abstract_inverted_index.manual | 205 |
| abstract_inverted_index.method | 60, 193 |
| abstract_inverted_index.model. | 124 |
| abstract_inverted_index.motion | 31, 143, 185, 219, 229 |
| abstract_inverted_index.muscle | 8 |
| abstract_inverted_index.paper, | 94 |
| abstract_inverted_index.recall | 173 |
| abstract_inverted_index.relies | 33 |
| abstract_inverted_index.tasks, | 151 |
| abstract_inverted_index.(+0.8%) | 171 |
| abstract_inverted_index.YOLOv5s | 154 |
| abstract_inverted_index.actions | 71 |
| abstract_inverted_index.divided | 115 |
| abstract_inverted_index.enhance | 88 |
| abstract_inverted_index.feature | 35 |
| abstract_inverted_index.images. | 104 |
| abstract_inverted_index.leading | 45 |
| abstract_inverted_index.motions | 138 |
| abstract_inverted_index.recall, | 161 |
| abstract_inverted_index.require | 41 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.signals | 98 |
| abstract_inverted_index.testing | 120 |
| abstract_inverted_index.through | 221 |
| abstract_inverted_index.(+0.3%). | 176 |
| abstract_inverted_index.accuracy | 182, 189 |
| abstract_inverted_index.achieved | 156 |
| abstract_inverted_index.actions, | 44 |
| abstract_inverted_index.activity | 9 |
| abstract_inverted_index.analysis | 230 |
| abstract_inverted_index.category | 144 |
| abstract_inverted_index.devices. | 233 |
| abstract_inverted_index.enhances | 213 |
| abstract_inverted_index.improved | 164 |
| abstract_inverted_index.isolated | 134 |
| abstract_inverted_index.methods, | 210 |
| abstract_inverted_index.motions, | 200 |
| abstract_inverted_index.offering | 14 |
| abstract_inverted_index.proposed | 130 |
| abstract_inverted_index.proposes | 57 |
| abstract_inverted_index.realizes | 194 |
| abstract_inverted_index.results. | 148 |
| abstract_inverted_index.signals, | 13 |
| abstract_inverted_index.solution | 227 |
| abstract_inverted_index.training | 109, 118 |
| abstract_inverted_index.wearable | 232 |
| abstract_inverted_index.MMG-based | 30 |
| abstract_inverted_index.accuracy. | 53 |
| abstract_inverted_index.achieving | 187 |
| abstract_inverted_index.assessing | 7 |
| abstract_inverted_index.attention | 85 |
| abstract_inverted_index.automatic | 196 |
| abstract_inverted_index.collected | 96 |
| abstract_inverted_index.effective | 226 |
| abstract_inverted_index.increased | 167 |
| abstract_inverted_index.measuring | 11 |
| abstract_inverted_index.mechanism | 86 |
| abstract_inverted_index.model’s | 90 |
| abstract_inverted_index.parameter | 206 |
| abstract_inverted_index.precision | 158, 168 |
| abstract_inverted_index.providing | 224 |
| abstract_inverted_index.real-time | 18, 49, 63, 142, 215 |
| abstract_inverted_index.segmented | 133 |
| abstract_inverted_index.technique | 5 |
| abstract_inverted_index.training, | 39 |
| abstract_inverted_index.training. | 28 |
| abstract_inverted_index.Therefore, | 54 |
| abstract_inverted_index.YOLOv5s-SE | 123, 165 |
| abstract_inverted_index.adjustment | 207 |
| abstract_inverted_index.algorithm, | 80 |
| abstract_inverted_index.challenges | 47 |
| abstract_inverted_index.classifier | 38 |
| abstract_inverted_index.continuous | 43, 136 |
| abstract_inverted_index.extraction | 36 |
| abstract_inverted_index.innovative | 59 |
| abstract_inverted_index.mechanical | 12 |
| abstract_inverted_index.monitoring | 19 |
| abstract_inverted_index.outputting | 147 |
| abstract_inverted_index.performing | 141 |
| abstract_inverted_index.predicting | 184 |
| abstract_inverted_index.prediction | 145 |
| abstract_inverted_index.segmenting | 42 |
| abstract_inverted_index.Traditional | 29 |
| abstract_inverted_index.categories, | 186 |
| abstract_inverted_index.effectively | 132 |
| abstract_inverted_index.exceptional | 181 |
| abstract_inverted_index.integrating | 81 |
| abstract_inverted_index.limitations | 203 |
| abstract_inverted_index.performance | 50, 216 |
| abstract_inverted_index.processing, | 107, 223 |
| abstract_inverted_index.recognition | 32, 220 |
| abstract_inverted_index.sensitivity | 16 |
| abstract_inverted_index.time-domain | 199 |
| abstract_inverted_index.time-series | 103 |
| abstract_inverted_index.traditional | 209 |
| abstract_inverted_index.transformed | 100 |
| abstract_inverted_index.applications | 25 |
| abstract_inverted_index.demonstrated | 127, 180 |
| abstract_inverted_index.non-invasive | 4 |
| abstract_inverted_index.performance. | 91 |
| abstract_inverted_index.segmentation | 52, 64, 150, 197 |
| abstract_inverted_index.Additionally, | 177 |
| abstract_inverted_index.capabilities, | 20 |
| abstract_inverted_index.classification | 66 |
| abstract_inverted_index.rehabilitation | 27, 70 |
| abstract_inverted_index.simultaneously | 140, 212 |
| abstract_inverted_index.one-dimensional | 102 |
| abstract_inverted_index.Mechanomyography | 0 |
| abstract_inverted_index.Squeeze-and-Excitation | 83 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.14654726 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |