MMQ: Multimodal Mixture-of-Quantization Tokenization for Semantic ID Generation and User Behavioral Adaptation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.15281
Recommender systems traditionally represent items using unique identifiers (ItemIDs), but this approach struggles with large, dynamic item corpora and sparse long-tail data, limiting scalability and generalization. Semantic IDs, derived from multimodal content such as text and images, offer a promising alternative by mapping items into a shared semantic space, enabling knowledge transfer and improving recommendations for new or rare items. However, existing methods face two key challenges: (1) balancing cross-modal synergy with modality-specific uniqueness, and (2) bridging the semantic-behavioral gap, where semantic representations may misalign with actual user preferences. To address these challenges, we propose Multimodal Mixture-of-Quantization (MMQ), a two-stage framework that trains a novel multimodal tokenizer. First, a shared-specific tokenizer leverages a multi-expert architecture with modality-specific and modality-shared experts, using orthogonal regularization to capture comprehensive multimodal information. Second, behavior-aware fine-tuning dynamically adapts semantic IDs to downstream recommendation objectives while preserving modality information through a multimodal reconstruction loss. Extensive offline experiments and online A/B tests demonstrate that MMQ effectively unifies multimodal synergy, specificity, and behavioral adaptation, providing a scalable and versatile solution for both generative retrieval and discriminative ranking tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.15281
- https://arxiv.org/pdf/2508.15281
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416050722
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416050722Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.15281Digital Object Identifier
- Title
-
MMQ: Multimodal Mixture-of-Quantization Tokenization for Semantic ID Generation and User Behavioral AdaptationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-21Full publication date if available
- Authors
-
Yi Xu, Moyu Zhang, Chenxuan Li, Zhihao Liao, Haibo Xing, Hao Deng, Jinxin Hu, Bowen Zhang, Xiaoyi Zeng, Jing ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.15281Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.15281Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.15281Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416050722 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.15281 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.15281 |
| ids.openalex | https://openalex.org/W4416050722 |
| fwci | |
| type | preprint |
| title | MMQ: Multimodal Mixture-of-Quantization Tokenization for Semantic ID Generation and User Behavioral Adaptation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.15281 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.15281 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.15281 |
| locations[1].id | doi:10.48550/arxiv.2508.15281 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.15281 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5085919297 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1679-3271 |
| authorships[0].author.display_name | Yi Xu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xu, Yi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012930762 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9104-1881 |
| authorships[1].author.display_name | Moyu Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Moyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102014574 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5421-9225 |
| authorships[2].author.display_name | Chenxuan Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Chenxuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5084755895 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhihao Liao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liao, Zhihao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5089731819 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Haibo Xing |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xing, Haibo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101891434 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Hao Deng |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Deng, Hao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5032933252 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7252-5207 |
| authorships[6].author.display_name | Jinxin Hu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hu, Jinxin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100385138 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3581-9476 |
| authorships[7].author.display_name | Bowen Zhang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhang, Yu |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5082008486 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-3742-4910 |
| authorships[8].author.display_name | Xiaoyi Zeng |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zeng, Xiaoyi |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100345320 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6270-7771 |
| authorships[9].author.display_name | Jing Zhang |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Zhang, Jing |
| authorships[9].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.15281 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MMQ: Multimodal Mixture-of-Quantization Tokenization for Semantic ID Generation and User Behavioral Adaptation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-28T10:50:28.778747 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.15281 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.15281 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.15281 |
| primary_location.id | pmh:oai:arXiv.org:2508.15281 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.15281 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.15281 |
| publication_date | 2025-08-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 38, 45, 98, 103, 108, 112, 144, 167 |
| abstract_inverted_index.To | 89 |
| abstract_inverted_index.as | 33 |
| abstract_inverted_index.by | 41 |
| abstract_inverted_index.or | 57 |
| abstract_inverted_index.to | 123, 135 |
| abstract_inverted_index.we | 93 |
| abstract_inverted_index.(1) | 67 |
| abstract_inverted_index.(2) | 75 |
| abstract_inverted_index.A/B | 153 |
| abstract_inverted_index.IDs | 134 |
| abstract_inverted_index.MMQ | 157 |
| abstract_inverted_index.and | 18, 24, 35, 52, 74, 117, 151, 163, 169, 176 |
| abstract_inverted_index.but | 9 |
| abstract_inverted_index.for | 55, 172 |
| abstract_inverted_index.key | 65 |
| abstract_inverted_index.may | 83 |
| abstract_inverted_index.new | 56 |
| abstract_inverted_index.the | 77 |
| abstract_inverted_index.two | 64 |
| abstract_inverted_index.IDs, | 27 |
| abstract_inverted_index.both | 173 |
| abstract_inverted_index.face | 63 |
| abstract_inverted_index.from | 29 |
| abstract_inverted_index.gap, | 79 |
| abstract_inverted_index.into | 44 |
| abstract_inverted_index.item | 16 |
| abstract_inverted_index.rare | 58 |
| abstract_inverted_index.such | 32 |
| abstract_inverted_index.text | 34 |
| abstract_inverted_index.that | 101, 156 |
| abstract_inverted_index.this | 10 |
| abstract_inverted_index.user | 87 |
| abstract_inverted_index.with | 13, 71, 85, 115 |
| abstract_inverted_index.data, | 21 |
| abstract_inverted_index.items | 4, 43 |
| abstract_inverted_index.loss. | 147 |
| abstract_inverted_index.novel | 104 |
| abstract_inverted_index.offer | 37 |
| abstract_inverted_index.tests | 154 |
| abstract_inverted_index.these | 91 |
| abstract_inverted_index.using | 5, 120 |
| abstract_inverted_index.where | 80 |
| abstract_inverted_index.while | 139 |
| abstract_inverted_index.(MMQ), | 97 |
| abstract_inverted_index.First, | 107 |
| abstract_inverted_index.actual | 86 |
| abstract_inverted_index.adapts | 132 |
| abstract_inverted_index.items. | 59 |
| abstract_inverted_index.large, | 14 |
| abstract_inverted_index.online | 152 |
| abstract_inverted_index.shared | 46 |
| abstract_inverted_index.space, | 48 |
| abstract_inverted_index.sparse | 19 |
| abstract_inverted_index.tasks. | 179 |
| abstract_inverted_index.trains | 102 |
| abstract_inverted_index.unique | 6 |
| abstract_inverted_index.Second, | 128 |
| abstract_inverted_index.address | 90 |
| abstract_inverted_index.capture | 124 |
| abstract_inverted_index.content | 31 |
| abstract_inverted_index.corpora | 17 |
| abstract_inverted_index.derived | 28 |
| abstract_inverted_index.dynamic | 15 |
| abstract_inverted_index.images, | 36 |
| abstract_inverted_index.mapping | 42 |
| abstract_inverted_index.methods | 62 |
| abstract_inverted_index.offline | 149 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.ranking | 178 |
| abstract_inverted_index.synergy | 70 |
| abstract_inverted_index.systems | 1 |
| abstract_inverted_index.through | 143 |
| abstract_inverted_index.unifies | 159 |
| abstract_inverted_index.However, | 60 |
| abstract_inverted_index.Semantic | 26 |
| abstract_inverted_index.approach | 11 |
| abstract_inverted_index.bridging | 76 |
| abstract_inverted_index.enabling | 49 |
| abstract_inverted_index.existing | 61 |
| abstract_inverted_index.experts, | 119 |
| abstract_inverted_index.limiting | 22 |
| abstract_inverted_index.misalign | 84 |
| abstract_inverted_index.modality | 141 |
| abstract_inverted_index.scalable | 168 |
| abstract_inverted_index.semantic | 47, 81, 133 |
| abstract_inverted_index.solution | 171 |
| abstract_inverted_index.synergy, | 161 |
| abstract_inverted_index.transfer | 51 |
| abstract_inverted_index.Extensive | 148 |
| abstract_inverted_index.balancing | 68 |
| abstract_inverted_index.framework | 100 |
| abstract_inverted_index.improving | 53 |
| abstract_inverted_index.knowledge | 50 |
| abstract_inverted_index.leverages | 111 |
| abstract_inverted_index.long-tail | 20 |
| abstract_inverted_index.promising | 39 |
| abstract_inverted_index.providing | 166 |
| abstract_inverted_index.represent | 3 |
| abstract_inverted_index.retrieval | 175 |
| abstract_inverted_index.struggles | 12 |
| abstract_inverted_index.tokenizer | 110 |
| abstract_inverted_index.two-stage | 99 |
| abstract_inverted_index.versatile | 170 |
| abstract_inverted_index.(ItemIDs), | 8 |
| abstract_inverted_index.Multimodal | 95 |
| abstract_inverted_index.behavioral | 164 |
| abstract_inverted_index.downstream | 136 |
| abstract_inverted_index.generative | 174 |
| abstract_inverted_index.multimodal | 30, 105, 126, 145, 160 |
| abstract_inverted_index.objectives | 138 |
| abstract_inverted_index.orthogonal | 121 |
| abstract_inverted_index.preserving | 140 |
| abstract_inverted_index.tokenizer. | 106 |
| abstract_inverted_index.Recommender | 0 |
| abstract_inverted_index.adaptation, | 165 |
| abstract_inverted_index.alternative | 40 |
| abstract_inverted_index.challenges, | 92 |
| abstract_inverted_index.challenges: | 66 |
| abstract_inverted_index.cross-modal | 69 |
| abstract_inverted_index.demonstrate | 155 |
| abstract_inverted_index.dynamically | 131 |
| abstract_inverted_index.effectively | 158 |
| abstract_inverted_index.experiments | 150 |
| abstract_inverted_index.fine-tuning | 130 |
| abstract_inverted_index.identifiers | 7 |
| abstract_inverted_index.information | 142 |
| abstract_inverted_index.scalability | 23 |
| abstract_inverted_index.uniqueness, | 73 |
| abstract_inverted_index.architecture | 114 |
| abstract_inverted_index.information. | 127 |
| abstract_inverted_index.multi-expert | 113 |
| abstract_inverted_index.preferences. | 88 |
| abstract_inverted_index.specificity, | 162 |
| abstract_inverted_index.comprehensive | 125 |
| abstract_inverted_index.traditionally | 2 |
| abstract_inverted_index.behavior-aware | 129 |
| abstract_inverted_index.discriminative | 177 |
| abstract_inverted_index.recommendation | 137 |
| abstract_inverted_index.reconstruction | 146 |
| abstract_inverted_index.regularization | 122 |
| abstract_inverted_index.generalization. | 25 |
| abstract_inverted_index.modality-shared | 118 |
| abstract_inverted_index.recommendations | 54 |
| abstract_inverted_index.representations | 82 |
| abstract_inverted_index.shared-specific | 109 |
| abstract_inverted_index.modality-specific | 72, 116 |
| abstract_inverted_index.semantic-behavioral | 78 |
| abstract_inverted_index.Mixture-of-Quantization | 96 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |