Model-Based Clustering of Multivariate Rating Data Accounting for Feeling and Uncertainty Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s00357-025-09521-6
Among the models for the analysis of rating data, the CUB (combination of discrete uniform and shifted binomial random variable) is notable because it assumes that the final rating given by a respondent is the result of the joint action of two latent components: the feeling and the uncertainty, which are modelled through a shifted binomial and a uniform random variable, respectively. We propose a mixture of multivariate CUB models for clustering multivariate rating data, estimated using the EM algorithm. The performance of our model was evaluated through simulation studies, which demonstrated its capability to capture the hidden structure of the data. Additionally, we show two case studies which highlight the model’s effectiveness in uncovering latent structures in real-world data and its utility in interpreting the results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00357-025-09521-6
- https://link.springer.com/content/pdf/10.1007/s00357-025-09521-6.pdf
- OA Status
- hybrid
- References
- 44
- OpenAlex ID
- https://openalex.org/W4415462385
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415462385Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00357-025-09521-6Digital Object Identifier
- Title
-
Model-Based Clustering of Multivariate Rating Data Accounting for Feeling and UncertaintyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-23Full publication date if available
- Authors
-
Matteo Ventura, Julien Jacques, Paola ZuccolottoList of authors in order
- Landing page
-
https://doi.org/10.1007/s00357-025-09521-6Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00357-025-09521-6.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00357-025-09521-6.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
44Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415462385 |
|---|---|
| doi | https://doi.org/10.1007/s00357-025-09521-6 |
| ids.doi | https://doi.org/10.1007/s00357-025-09521-6 |
| ids.openalex | https://openalex.org/W4415462385 |
| fwci | 0.0 |
| type | article |
| title | Model-Based Clustering of Multivariate Rating Data Accounting for Feeling and Uncertainty |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9689000248908997 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Methods and Mixture Models |
| topics[1].id | https://openalex.org/T10928 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9678999781608582 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Probabilistic and Robust Engineering Design |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9528999924659729 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| language | en |
| locations[0].id | doi:10.1007/s00357-025-09521-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S73028643 |
| locations[0].source.issn | 0176-4268, 1432-1343 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0176-4268 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Classification |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00357-025-09521-6.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Classification |
| locations[0].landing_page_url | https://doi.org/10.1007/s00357-025-09521-6 |
| locations[1].id | pmh:oai:HAL:hal-05328087v1 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal articles |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Classification, 2025, ⟨10.1007/s00357-025-09521-6⟩ |
| locations[1].landing_page_url | https://hal.science/hal-05328087 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102855178 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1010-0948 |
| authorships[0].author.display_name | Matteo Ventura |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matteo Ventura |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026999947 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4808-2781 |
| authorships[1].author.display_name | Julien Jacques |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Julien Jacques |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087995350 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4399-7018 |
| authorships[2].author.display_name | Paola Zuccolotto |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Paola Zuccolotto |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00357-025-09521-6.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | Model-Based Clustering of Multivariate Rating Data Accounting for Feeling and Uncertainty |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9689000248908997 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Methods and Mixture Models |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s00357-025-09521-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S73028643 |
| best_oa_location.source.issn | 0176-4268, 1432-1343 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0176-4268 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Classification |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00357-025-09521-6.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Classification |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00357-025-09521-6 |
| primary_location.id | doi:10.1007/s00357-025-09521-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S73028643 |
| primary_location.source.issn | 0176-4268, 1432-1343 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0176-4268 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Classification |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00357-025-09521-6.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Classification |
| primary_location.landing_page_url | https://doi.org/10.1007/s00357-025-09521-6 |
| publication_date | 2025-10-23 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2480455979, https://openalex.org/W2082503527, https://openalex.org/W572470661, https://openalex.org/W4394978894, https://openalex.org/W4297498781, https://openalex.org/W1996686201, https://openalex.org/W583546247, https://openalex.org/W2950867735, https://openalex.org/W2128540811, https://openalex.org/W2910251806, https://openalex.org/W2464332954, https://openalex.org/W3012326351, https://openalex.org/W1982882480, https://openalex.org/W2049633694, https://openalex.org/W2156452366, https://openalex.org/W2042243562, https://openalex.org/W2007726934, https://openalex.org/W1604544535, https://openalex.org/W4235169531, https://openalex.org/W4398131331, https://openalex.org/W1966729776, https://openalex.org/W1850108541, https://openalex.org/W4399477941, https://openalex.org/W1971844676, https://openalex.org/W2028324177, https://openalex.org/W2563818555, https://openalex.org/W3184303741, https://openalex.org/W2524681876, https://openalex.org/W2224746910, https://openalex.org/W2963724803, https://openalex.org/W2171074980, https://openalex.org/W2488678869, https://openalex.org/W2937095991, https://openalex.org/W4385143167, https://openalex.org/W2750615509, https://openalex.org/W2168175751, https://openalex.org/W2519132385, https://openalex.org/W2783772460, https://openalex.org/W4317582035, https://openalex.org/W3036366057, https://openalex.org/W2800553466, https://openalex.org/W2944691719, https://openalex.org/W2057720927, https://openalex.org/W3213258851 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 32, 54, 58, 65 |
| abstract_inverted_index.EM | 79 |
| abstract_inverted_index.We | 63 |
| abstract_inverted_index.by | 31 |
| abstract_inverted_index.in | 114, 118, 124 |
| abstract_inverted_index.is | 21, 34 |
| abstract_inverted_index.it | 24 |
| abstract_inverted_index.of | 7, 13, 37, 41, 67, 83, 100 |
| abstract_inverted_index.to | 95 |
| abstract_inverted_index.we | 104 |
| abstract_inverted_index.CUB | 11, 69 |
| abstract_inverted_index.The | 81 |
| abstract_inverted_index.and | 16, 47, 57, 121 |
| abstract_inverted_index.are | 51 |
| abstract_inverted_index.for | 4, 71 |
| abstract_inverted_index.its | 93, 122 |
| abstract_inverted_index.our | 84 |
| abstract_inverted_index.the | 2, 5, 10, 27, 35, 38, 45, 48, 78, 97, 101, 111, 126 |
| abstract_inverted_index.two | 42, 106 |
| abstract_inverted_index.was | 86 |
| abstract_inverted_index.case | 107 |
| abstract_inverted_index.data | 120 |
| abstract_inverted_index.show | 105 |
| abstract_inverted_index.that | 26 |
| abstract_inverted_index.Among | 1 |
| abstract_inverted_index.data, | 9, 75 |
| abstract_inverted_index.data. | 102 |
| abstract_inverted_index.final | 28 |
| abstract_inverted_index.given | 30 |
| abstract_inverted_index.joint | 39 |
| abstract_inverted_index.model | 85 |
| abstract_inverted_index.using | 77 |
| abstract_inverted_index.which | 50, 91, 109 |
| abstract_inverted_index.action | 40 |
| abstract_inverted_index.hidden | 98 |
| abstract_inverted_index.latent | 43, 116 |
| abstract_inverted_index.models | 3, 70 |
| abstract_inverted_index.random | 19, 60 |
| abstract_inverted_index.rating | 8, 29, 74 |
| abstract_inverted_index.result | 36 |
| abstract_inverted_index.assumes | 25 |
| abstract_inverted_index.because | 23 |
| abstract_inverted_index.capture | 96 |
| abstract_inverted_index.feeling | 46 |
| abstract_inverted_index.mixture | 66 |
| abstract_inverted_index.notable | 22 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.shifted | 17, 55 |
| abstract_inverted_index.studies | 108 |
| abstract_inverted_index.through | 53, 88 |
| abstract_inverted_index.uniform | 15, 59 |
| abstract_inverted_index.utility | 123 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 6 |
| abstract_inverted_index.binomial | 18, 56 |
| abstract_inverted_index.discrete | 14 |
| abstract_inverted_index.modelled | 52 |
| abstract_inverted_index.results. | 127 |
| abstract_inverted_index.studies, | 90 |
| abstract_inverted_index.estimated | 76 |
| abstract_inverted_index.evaluated | 87 |
| abstract_inverted_index.highlight | 110 |
| abstract_inverted_index.model’s | 112 |
| abstract_inverted_index.structure | 99 |
| abstract_inverted_index.variable) | 20 |
| abstract_inverted_index.variable, | 61 |
| abstract_inverted_index.algorithm. | 80 |
| abstract_inverted_index.capability | 94 |
| abstract_inverted_index.clustering | 72 |
| abstract_inverted_index.real-world | 119 |
| abstract_inverted_index.respondent | 33 |
| abstract_inverted_index.simulation | 89 |
| abstract_inverted_index.structures | 117 |
| abstract_inverted_index.uncovering | 115 |
| abstract_inverted_index.components: | 44 |
| abstract_inverted_index.performance | 82 |
| abstract_inverted_index.(combination | 12 |
| abstract_inverted_index.demonstrated | 92 |
| abstract_inverted_index.interpreting | 125 |
| abstract_inverted_index.multivariate | 68, 73 |
| abstract_inverted_index.uncertainty, | 49 |
| abstract_inverted_index.Additionally, | 103 |
| abstract_inverted_index.effectiveness | 113 |
| abstract_inverted_index.respectively. | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.23314873 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |