Model-Based Exploration in Monitored Markov Decision Processes Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.16772
A tenet of reinforcement learning is that the agent always observes rewards. However, this is not true in many realistic settings, e.g., a human observer may not always be available to provide rewards, sensors may be limited or malfunctioning, or rewards may be inaccessible during deployment. Monitored Markov decision processes (Mon-MDPs) have recently been proposed to model such settings. However, existing Mon-MDP algorithms have several limitations: they do not fully exploit the problem structure, cannot leverage a known monitor, lack worst-case guarantees for 'unsolvable' Mon-MDPs without specific initialization, and offer only asymptotic convergence proofs. This paper makes three contributions. First, we introduce a model-based algorithm for Mon-MDPs that addresses these shortcomings. The algorithm employs two instances of model-based interval estimation: one to ensure that observable rewards are reliably captured, and another to learn the minimax-optimal policy. Second, we empirically demonstrate the advantages. We show faster convergence than prior algorithms in over four dozen benchmarks, and even more dramatic improvement when the monitoring process is known. Third, we present the first finite-sample bound on performance. We show convergence to a minimax-optimal policy even when some rewards are never observable.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.16772
- https://arxiv.org/pdf/2502.16772
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417094986
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417094986Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.16772Digital Object Identifier
- Title
-
Model-Based Exploration in Monitored Markov Decision ProcessesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-24Full publication date if available
- Authors
-
Alireza Kazemipour, Simone Parisi, Matthew E. Taylor, Michael BowlingList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.16772Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.16772Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.16772Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417094986 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.16772 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.16772 |
| ids.openalex | https://openalex.org/W4417094986 |
| fwci | |
| type | preprint |
| title | Model-Based Exploration in Monitored Markov Decision Processes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.16772 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.16772 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.16772 |
| locations[1].id | doi:10.48550/arxiv.2502.16772 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.16772 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5054536993 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7658-6288 |
| authorships[0].author.display_name | Alireza Kazemipour |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kazemipour, Alireza |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055633714 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3886-8131 |
| authorships[1].author.display_name | Simone Parisi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Parisi, Simone |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070914351 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8946-0211 |
| authorships[2].author.display_name | Matthew E. Taylor |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Taylor, Matthew E. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5081163135 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2960-8418 |
| authorships[3].author.display_name | Michael Bowling |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bowling, Michael |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.16772 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Model-Based Exploration in Monitored Markov Decision Processes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-07T17:40:25.070200 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.16772 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.16772 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.16772 |
| primary_location.id | pmh:oai:arXiv.org:2502.16772 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.16772 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.16772 |
| publication_date | 2025-02-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 22, 76, 102, 178 |
| abstract_inverted_index.We | 142, 174 |
| abstract_inverted_index.be | 28, 35, 42 |
| abstract_inverted_index.do | 67 |
| abstract_inverted_index.in | 17, 149 |
| abstract_inverted_index.is | 5, 14, 163 |
| abstract_inverted_index.of | 2, 116 |
| abstract_inverted_index.on | 172 |
| abstract_inverted_index.or | 37, 39 |
| abstract_inverted_index.to | 30, 55, 121, 131, 177 |
| abstract_inverted_index.we | 100, 137, 166 |
| abstract_inverted_index.The | 111 |
| abstract_inverted_index.and | 88, 129, 154 |
| abstract_inverted_index.are | 126, 185 |
| abstract_inverted_index.for | 82, 105 |
| abstract_inverted_index.may | 25, 34, 41 |
| abstract_inverted_index.not | 15, 26, 68 |
| abstract_inverted_index.one | 120 |
| abstract_inverted_index.the | 7, 71, 133, 140, 160, 168 |
| abstract_inverted_index.two | 114 |
| abstract_inverted_index.This | 94 |
| abstract_inverted_index.been | 53 |
| abstract_inverted_index.even | 155, 181 |
| abstract_inverted_index.four | 151 |
| abstract_inverted_index.have | 51, 63 |
| abstract_inverted_index.lack | 79 |
| abstract_inverted_index.many | 18 |
| abstract_inverted_index.more | 156 |
| abstract_inverted_index.only | 90 |
| abstract_inverted_index.over | 150 |
| abstract_inverted_index.show | 143, 175 |
| abstract_inverted_index.some | 183 |
| abstract_inverted_index.such | 57 |
| abstract_inverted_index.than | 146 |
| abstract_inverted_index.that | 6, 107, 123 |
| abstract_inverted_index.they | 66 |
| abstract_inverted_index.this | 13 |
| abstract_inverted_index.true | 16 |
| abstract_inverted_index.when | 159, 182 |
| abstract_inverted_index.agent | 8 |
| abstract_inverted_index.bound | 171 |
| abstract_inverted_index.dozen | 152 |
| abstract_inverted_index.e.g., | 21 |
| abstract_inverted_index.first | 169 |
| abstract_inverted_index.fully | 69 |
| abstract_inverted_index.human | 23 |
| abstract_inverted_index.known | 77 |
| abstract_inverted_index.learn | 132 |
| abstract_inverted_index.makes | 96 |
| abstract_inverted_index.model | 56 |
| abstract_inverted_index.never | 186 |
| abstract_inverted_index.offer | 89 |
| abstract_inverted_index.paper | 95 |
| abstract_inverted_index.prior | 147 |
| abstract_inverted_index.tenet | 1 |
| abstract_inverted_index.these | 109 |
| abstract_inverted_index.three | 97 |
| abstract_inverted_index.First, | 99 |
| abstract_inverted_index.Markov | 47 |
| abstract_inverted_index.Third, | 165 |
| abstract_inverted_index.always | 9, 27 |
| abstract_inverted_index.cannot | 74 |
| abstract_inverted_index.during | 44 |
| abstract_inverted_index.ensure | 122 |
| abstract_inverted_index.faster | 144 |
| abstract_inverted_index.known. | 164 |
| abstract_inverted_index.policy | 180 |
| abstract_inverted_index.Mon-MDP | 61 |
| abstract_inverted_index.Second, | 136 |
| abstract_inverted_index.another | 130 |
| abstract_inverted_index.employs | 113 |
| abstract_inverted_index.exploit | 70 |
| abstract_inverted_index.limited | 36 |
| abstract_inverted_index.policy. | 135 |
| abstract_inverted_index.present | 167 |
| abstract_inverted_index.problem | 72 |
| abstract_inverted_index.process | 162 |
| abstract_inverted_index.proofs. | 93 |
| abstract_inverted_index.provide | 31 |
| abstract_inverted_index.rewards | 40, 125, 184 |
| abstract_inverted_index.sensors | 33 |
| abstract_inverted_index.several | 64 |
| abstract_inverted_index.without | 85 |
| abstract_inverted_index.However, | 12, 59 |
| abstract_inverted_index.Mon-MDPs | 84, 106 |
| abstract_inverted_index.decision | 48 |
| abstract_inverted_index.dramatic | 157 |
| abstract_inverted_index.existing | 60 |
| abstract_inverted_index.interval | 118 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.leverage | 75 |
| abstract_inverted_index.monitor, | 78 |
| abstract_inverted_index.observer | 24 |
| abstract_inverted_index.observes | 10 |
| abstract_inverted_index.proposed | 54 |
| abstract_inverted_index.recently | 52 |
| abstract_inverted_index.reliably | 127 |
| abstract_inverted_index.rewards, | 32 |
| abstract_inverted_index.rewards. | 11 |
| abstract_inverted_index.specific | 86 |
| abstract_inverted_index.Monitored | 46 |
| abstract_inverted_index.addresses | 108 |
| abstract_inverted_index.algorithm | 104, 112 |
| abstract_inverted_index.available | 29 |
| abstract_inverted_index.captured, | 128 |
| abstract_inverted_index.instances | 115 |
| abstract_inverted_index.introduce | 101 |
| abstract_inverted_index.processes | 49 |
| abstract_inverted_index.realistic | 19 |
| abstract_inverted_index.settings, | 20 |
| abstract_inverted_index.settings. | 58 |
| abstract_inverted_index.(Mon-MDPs) | 50 |
| abstract_inverted_index.algorithms | 62, 148 |
| abstract_inverted_index.asymptotic | 91 |
| abstract_inverted_index.guarantees | 81 |
| abstract_inverted_index.monitoring | 161 |
| abstract_inverted_index.observable | 124 |
| abstract_inverted_index.structure, | 73 |
| abstract_inverted_index.worst-case | 80 |
| abstract_inverted_index.advantages. | 141 |
| abstract_inverted_index.benchmarks, | 153 |
| abstract_inverted_index.convergence | 92, 145, 176 |
| abstract_inverted_index.demonstrate | 139 |
| abstract_inverted_index.deployment. | 45 |
| abstract_inverted_index.empirically | 138 |
| abstract_inverted_index.estimation: | 119 |
| abstract_inverted_index.improvement | 158 |
| abstract_inverted_index.model-based | 103, 117 |
| abstract_inverted_index.observable. | 187 |
| abstract_inverted_index.'unsolvable' | 83 |
| abstract_inverted_index.inaccessible | 43 |
| abstract_inverted_index.limitations: | 65 |
| abstract_inverted_index.performance. | 173 |
| abstract_inverted_index.finite-sample | 170 |
| abstract_inverted_index.reinforcement | 3 |
| abstract_inverted_index.shortcomings. | 110 |
| abstract_inverted_index.contributions. | 98 |
| abstract_inverted_index.initialization, | 87 |
| abstract_inverted_index.malfunctioning, | 38 |
| abstract_inverted_index.minimax-optimal | 134, 179 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |