Model Error Propagation via Learned Contraction Metrics for Safe Feedback Motion Planning of Unknown Systems Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2104.08695
We present a method for contraction-based feedback motion planning of locally incrementally exponentially stabilizable systems with unknown dynamics that provides probabilistic safety and reachability guarantees. Given a dynamics dataset, our method learns a deep control-affine approximation of the dynamics. To find a trusted domain where this model can be used for planning, we obtain an estimate of the Lipschitz constant of the model error, which is valid with a given probability, in a region around the training data, providing a local, spatially-varying model error bound. We derive a trajectory tracking error bound for a contraction-based controller that is subjected to this model error, and then learn a controller that optimizes this tracking bound. With a given probability, we verify the correctness of the controller and tracking error bound in the trusted domain. We then use the trajectory error bound together with the trusted domain to guide a sampling-based planner to return trajectories that can be robustly tracked in execution. We show results on a 4D car, a 6D quadrotor, and a 22D deformable object manipulation task, showing our method plans safely with learned models of high-dimensional underactuated systems, while baselines that plan without considering the tracking error bound or the trusted domain can fail to stabilize the system and become unsafe.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2104.08695
- https://arxiv.org/pdf/2104.08695
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4300913383
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4300913383Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2104.08695Digital Object Identifier
- Title
-
Model Error Propagation via Learned Contraction Metrics for Safe Feedback Motion Planning of Unknown SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-18Full publication date if available
- Authors
-
Glen Chou, Necmiye Özay, Dmitry BerensonList of authors in order
- Landing page
-
https://arxiv.org/abs/2104.08695Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2104.08695Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2104.08695Direct OA link when available
- Concepts
-
Computer science, Tracking error, Upper and lower bounds, Trajectory, Probabilistic logic, Control theory (sociology), Correctness, Contraction (grammar), Controller (irrigation), Artificial intelligence, Algorithm, Mathematics, Control (management), Mathematical analysis, Internal medicine, Physics, Medicine, Astronomy, Biology, AgronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4300913383 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2104.08695 |
| ids.doi | https://doi.org/10.48550/arxiv.2104.08695 |
| ids.openalex | https://openalex.org/W4300913383 |
| fwci | |
| type | preprint |
| title | Model Error Propagation via Learned Contraction Metrics for Safe Feedback Motion Planning of Unknown Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9776999950408936 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T10653 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9753999710083008 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Robot Manipulation and Learning |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9635000228881836 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.723598301410675 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C183356978 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6559130549430847 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1779213 |
| concepts[1].display_name | Tracking error |
| concepts[2].id | https://openalex.org/C77553402 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5521053671836853 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[2].display_name | Upper and lower bounds |
| concepts[3].id | https://openalex.org/C13662910 |
| concepts[3].level | 2 |
| concepts[3].score | 0.539085328578949 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[3].display_name | Trajectory |
| concepts[4].id | https://openalex.org/C49937458 |
| concepts[4].level | 2 |
| concepts[4].score | 0.536394476890564 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[4].display_name | Probabilistic logic |
| concepts[5].id | https://openalex.org/C47446073 |
| concepts[5].level | 3 |
| concepts[5].score | 0.53005450963974 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[5].display_name | Control theory (sociology) |
| concepts[6].id | https://openalex.org/C55439883 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5195472836494446 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q360812 |
| concepts[6].display_name | Correctness |
| concepts[7].id | https://openalex.org/C163415756 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4592542350292206 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q126473 |
| concepts[7].display_name | Contraction (grammar) |
| concepts[8].id | https://openalex.org/C203479927 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41830307245254517 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5165939 |
| concepts[8].display_name | Controller (irrigation) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.303205668926239 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2548139691352844 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.22691911458969116 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C2775924081 |
| concepts[12].level | 2 |
| concepts[12].score | 0.15867695212364197 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[12].display_name | Control (management) |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C126322002 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[14].display_name | Internal medicine |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C1276947 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[17].display_name | Astronomy |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C6557445 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[19].display_name | Agronomy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.723598301410675 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/tracking-error |
| keywords[1].score | 0.6559130549430847 |
| keywords[1].display_name | Tracking error |
| keywords[2].id | https://openalex.org/keywords/upper-and-lower-bounds |
| keywords[2].score | 0.5521053671836853 |
| keywords[2].display_name | Upper and lower bounds |
| keywords[3].id | https://openalex.org/keywords/trajectory |
| keywords[3].score | 0.539085328578949 |
| keywords[3].display_name | Trajectory |
| keywords[4].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[4].score | 0.536394476890564 |
| keywords[4].display_name | Probabilistic logic |
| keywords[5].id | https://openalex.org/keywords/control-theory |
| keywords[5].score | 0.53005450963974 |
| keywords[5].display_name | Control theory (sociology) |
| keywords[6].id | https://openalex.org/keywords/correctness |
| keywords[6].score | 0.5195472836494446 |
| keywords[6].display_name | Correctness |
| keywords[7].id | https://openalex.org/keywords/contraction |
| keywords[7].score | 0.4592542350292206 |
| keywords[7].display_name | Contraction (grammar) |
| keywords[8].id | https://openalex.org/keywords/controller |
| keywords[8].score | 0.41830307245254517 |
| keywords[8].display_name | Controller (irrigation) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.303205668926239 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.2548139691352844 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.22691911458969116 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/control |
| keywords[12].score | 0.15867695212364197 |
| keywords[12].display_name | Control (management) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2104.08695 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2104.08695 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2104.08695 |
| locations[1].id | doi:10.48550/arxiv.2104.08695 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2104.08695 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5006149535 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4444-3631 |
| authorships[0].author.display_name | Glen Chou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chou, Glen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054418471 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5552-4392 |
| authorships[1].author.display_name | Necmiye Özay |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ozay, Necmiye |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083082888 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9712-109X |
| authorships[2].author.display_name | Dmitry Berenson |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Berenson, Dmitry |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2104.08695 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-10-04T00:00:00 |
| display_name | Model Error Propagation via Learned Contraction Metrics for Safe Feedback Motion Planning of Unknown Systems |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9776999950408936 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W1667647204, https://openalex.org/W2404647514, https://openalex.org/W4247536566, https://openalex.org/W2018477250, https://openalex.org/W3119814709, https://openalex.org/W4241418540, https://openalex.org/W1508895727, https://openalex.org/W2725786787, https://openalex.org/W4283160672, https://openalex.org/W2161688277 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2104.08695 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2104.08695 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2104.08695 |
| primary_location.id | pmh:oai:arXiv.org:2104.08695 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2104.08695 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2104.08695 |
| publication_date | 2021-04-18 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 26, 32, 41, 68, 72, 79, 87, 93, 106, 114, 146, 163, 166, 170 |
| abstract_inverted_index.4D | 164 |
| abstract_inverted_index.6D | 167 |
| abstract_inverted_index.To | 39 |
| abstract_inverted_index.We | 0, 85, 132, 159 |
| abstract_inverted_index.an | 54 |
| abstract_inverted_index.be | 48, 154 |
| abstract_inverted_index.in | 71, 128, 157 |
| abstract_inverted_index.is | 65, 97 |
| abstract_inverted_index.of | 9, 36, 56, 60, 121, 184 |
| abstract_inverted_index.on | 162 |
| abstract_inverted_index.or | 198 |
| abstract_inverted_index.to | 99, 144, 149, 204 |
| abstract_inverted_index.we | 52, 117 |
| abstract_inverted_index.22D | 171 |
| abstract_inverted_index.and | 22, 103, 124, 169, 208 |
| abstract_inverted_index.can | 47, 153, 202 |
| abstract_inverted_index.for | 4, 50, 92 |
| abstract_inverted_index.our | 29, 177 |
| abstract_inverted_index.the | 37, 57, 61, 75, 119, 122, 129, 135, 141, 194, 199, 206 |
| abstract_inverted_index.use | 134 |
| abstract_inverted_index.With | 113 |
| abstract_inverted_index.car, | 165 |
| abstract_inverted_index.deep | 33 |
| abstract_inverted_index.fail | 203 |
| abstract_inverted_index.find | 40 |
| abstract_inverted_index.plan | 191 |
| abstract_inverted_index.show | 160 |
| abstract_inverted_index.that | 18, 96, 108, 152, 190 |
| abstract_inverted_index.then | 104, 133 |
| abstract_inverted_index.this | 45, 100, 110 |
| abstract_inverted_index.used | 49 |
| abstract_inverted_index.with | 15, 67, 140, 181 |
| abstract_inverted_index.Given | 25 |
| abstract_inverted_index.bound | 91, 127, 138, 197 |
| abstract_inverted_index.data, | 77 |
| abstract_inverted_index.error | 83, 90, 126, 137, 196 |
| abstract_inverted_index.given | 69, 115 |
| abstract_inverted_index.guide | 145 |
| abstract_inverted_index.learn | 105 |
| abstract_inverted_index.model | 46, 62, 82, 101 |
| abstract_inverted_index.plans | 179 |
| abstract_inverted_index.task, | 175 |
| abstract_inverted_index.valid | 66 |
| abstract_inverted_index.where | 44 |
| abstract_inverted_index.which | 64 |
| abstract_inverted_index.while | 188 |
| abstract_inverted_index.around | 74 |
| abstract_inverted_index.become | 209 |
| abstract_inverted_index.bound. | 84, 112 |
| abstract_inverted_index.derive | 86 |
| abstract_inverted_index.domain | 43, 143, 201 |
| abstract_inverted_index.error, | 63, 102 |
| abstract_inverted_index.learns | 31 |
| abstract_inverted_index.local, | 80 |
| abstract_inverted_index.method | 3, 30, 178 |
| abstract_inverted_index.models | 183 |
| abstract_inverted_index.motion | 7 |
| abstract_inverted_index.object | 173 |
| abstract_inverted_index.obtain | 53 |
| abstract_inverted_index.region | 73 |
| abstract_inverted_index.return | 150 |
| abstract_inverted_index.safely | 180 |
| abstract_inverted_index.safety | 21 |
| abstract_inverted_index.system | 207 |
| abstract_inverted_index.verify | 118 |
| abstract_inverted_index.domain. | 131 |
| abstract_inverted_index.learned | 182 |
| abstract_inverted_index.locally | 10 |
| abstract_inverted_index.planner | 148 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.results | 161 |
| abstract_inverted_index.showing | 176 |
| abstract_inverted_index.systems | 14 |
| abstract_inverted_index.tracked | 156 |
| abstract_inverted_index.trusted | 42, 130, 142, 200 |
| abstract_inverted_index.unknown | 16 |
| abstract_inverted_index.unsafe. | 210 |
| abstract_inverted_index.without | 192 |
| abstract_inverted_index.constant | 59 |
| abstract_inverted_index.dataset, | 28 |
| abstract_inverted_index.dynamics | 17, 27 |
| abstract_inverted_index.estimate | 55 |
| abstract_inverted_index.feedback | 6 |
| abstract_inverted_index.planning | 8 |
| abstract_inverted_index.provides | 19 |
| abstract_inverted_index.robustly | 155 |
| abstract_inverted_index.systems, | 187 |
| abstract_inverted_index.together | 139 |
| abstract_inverted_index.tracking | 89, 111, 125, 195 |
| abstract_inverted_index.training | 76 |
| abstract_inverted_index.Lipschitz | 58 |
| abstract_inverted_index.baselines | 189 |
| abstract_inverted_index.dynamics. | 38 |
| abstract_inverted_index.optimizes | 109 |
| abstract_inverted_index.planning, | 51 |
| abstract_inverted_index.providing | 78 |
| abstract_inverted_index.stabilize | 205 |
| abstract_inverted_index.subjected | 98 |
| abstract_inverted_index.controller | 95, 107, 123 |
| abstract_inverted_index.deformable | 172 |
| abstract_inverted_index.execution. | 158 |
| abstract_inverted_index.quadrotor, | 168 |
| abstract_inverted_index.trajectory | 88, 136 |
| abstract_inverted_index.considering | 193 |
| abstract_inverted_index.correctness | 120 |
| abstract_inverted_index.guarantees. | 24 |
| abstract_inverted_index.manipulation | 174 |
| abstract_inverted_index.probability, | 70, 116 |
| abstract_inverted_index.reachability | 23 |
| abstract_inverted_index.stabilizable | 13 |
| abstract_inverted_index.trajectories | 151 |
| abstract_inverted_index.approximation | 35 |
| abstract_inverted_index.exponentially | 12 |
| abstract_inverted_index.incrementally | 11 |
| abstract_inverted_index.probabilistic | 20 |
| abstract_inverted_index.underactuated | 186 |
| abstract_inverted_index.control-affine | 34 |
| abstract_inverted_index.sampling-based | 147 |
| abstract_inverted_index.high-dimensional | 185 |
| abstract_inverted_index.contraction-based | 5, 94 |
| abstract_inverted_index.spatially-varying | 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |