Model for prediction of pesticide residues in soybean oil using partial least squares regression with molecular descriptors Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.agrcom.2024.100053
We developed a partial least squares regression (PLSR) model based on competitive adaptive reweighted sampling (CARS) to predict the processing factors of 54 pesticides during soybean oil processing. Characteristic variables were selected to improve the performance of the model. Four calculators were used to compute the molecular descriptors used in the model, and the model based on values computed with ChemoPy produced the best results: Rc = 0.94, RMSEc = 0.67, Rp = 0.91, and RMSEp = 0.54 for hot-pressed oil and Rc = 0.93, RMSEc = 0.73, Rp = 0.93, and RMSEp = 0.59 for cold-pressed oil. A rapid and quantitative model of processing factors was established to predict the behaviour and distribution of pesticide residues during food processing. The model was further validated using data from field-grown soybeans; it demonstrated a high correlation coefficient between predicted and measured residue concentrations (Rp > 0.93, RMSEp < 0.72) and successfully predicted the distribution and behaviour of pesticide residues. Our model provides a reference for assessing safety risk and determining the maximum residue limits for pesticides in processed products.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.agrcom.2024.100053
- OA Status
- diamond
- Cited By
- 4
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401529439
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401529439Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.agrcom.2024.100053Digital Object Identifier
- Title
-
Model for prediction of pesticide residues in soybean oil using partial least squares regression with molecular descriptorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-13Full publication date if available
- Authors
-
Yonghong Shi, Fengzhong Wang, Hong Xie, Bei Fan, Long Li, Zhiqiang Kong, Yatao Huang, Zhipeng Wang, Daoyong Lei, Minmin LiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.agrcom.2024.100053Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.agrcom.2024.100053Direct OA link when available
- Concepts
-
Partial least squares regression, Iteratively reweighted least squares, Regression, Sampling (signal processing), Regression analysis, Algorithm, Mathematics, Statistics, Computer science, Total least squares, Computer vision, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401529439 |
|---|---|
| doi | https://doi.org/10.1016/j.agrcom.2024.100053 |
| ids.doi | https://doi.org/10.1016/j.agrcom.2024.100053 |
| ids.openalex | https://openalex.org/W4401529439 |
| fwci | 2.94473536 |
| type | article |
| title | Model for prediction of pesticide residues in soybean oil using partial least squares regression with molecular descriptors |
| awards[0].id | https://openalex.org/G7030057531 |
| awards[0].funder_id | https://openalex.org/F4320330767 |
| awards[0].display_name | |
| awards[0].funder_award_id | Y2023XK12 |
| awards[0].funder_display_name | Liaoning Academy of Agricultural Sciences |
| awards[1].id | https://openalex.org/G7745977360 |
| awards[1].funder_id | https://openalex.org/F4320326181 |
| awards[1].display_name | |
| awards[1].funder_award_id | 31872006 |
| awards[1].funder_display_name | National Aerospace Science Foundation of China |
| awards[2].id | https://openalex.org/G6955994730 |
| awards[2].funder_id | https://openalex.org/F4320326189 |
| awards[2].display_name | |
| awards[2].funder_award_id | LJNY202115 |
| awards[2].funder_display_name | Taishan Scholar Project of Shandong Province |
| awards[3].id | https://openalex.org/G51037335 |
| awards[3].funder_id | https://openalex.org/F4320334978 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2023056 |
| awards[3].funder_display_name | Beijing Nova Program |
| awards[4].id | https://openalex.org/G4372626581 |
| awards[4].funder_id | https://openalex.org/F4320330767 |
| awards[4].display_name | |
| awards[4].funder_award_id | Y2022QC12 |
| awards[4].funder_display_name | Liaoning Academy of Agricultural Sciences |
| awards[5].id | https://openalex.org/G7032026924 |
| awards[5].funder_id | https://openalex.org/F4320326181 |
| awards[5].display_name | |
| awards[5].funder_award_id | 32272443 |
| awards[5].funder_display_name | National Aerospace Science Foundation of China |
| biblio.issue | 3 |
| biblio.volume | 2 |
| biblio.last_page | 100053 |
| biblio.first_page | 100053 |
| topics[0].id | https://openalex.org/T11423 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1106 |
| topics[0].subfield.display_name | Food Science |
| topics[0].display_name | Pesticide Residue Analysis and Safety |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T10211 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.972599983215332 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Computational Drug Discovery Methods |
| funders[0].id | https://openalex.org/F4320326181 |
| funders[0].ror | |
| funders[0].display_name | National Aerospace Science Foundation of China |
| funders[1].id | https://openalex.org/F4320326189 |
| funders[1].ror | |
| funders[1].display_name | Taishan Scholar Project of Shandong Province |
| funders[2].id | https://openalex.org/F4320330767 |
| funders[2].ror | https://ror.org/03vnb1535 |
| funders[2].display_name | Liaoning Academy of Agricultural Sciences |
| funders[3].id | https://openalex.org/F4320334978 |
| funders[3].ror | https://ror.org/034k14f91 |
| funders[3].display_name | Beijing Nova Program |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22354355 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8584568500518799 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q422009 |
| concepts[0].display_name | Partial least squares regression |
| concepts[1].id | https://openalex.org/C126090379 |
| concepts[1].level | 4 |
| concepts[1].score | 0.5075997114181519 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6094424 |
| concepts[1].display_name | Iteratively reweighted least squares |
| concepts[2].id | https://openalex.org/C83546350 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49085289239883423 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[2].display_name | Regression |
| concepts[3].id | https://openalex.org/C140779682 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4766279458999634 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[3].display_name | Sampling (signal processing) |
| concepts[4].id | https://openalex.org/C152877465 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4500581920146942 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[4].display_name | Regression analysis |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41649022698402405 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41476595401763916 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40848758816719055 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3207990825176239 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C169241690 |
| concepts[9].level | 3 |
| concepts[9].score | 0.30326753854751587 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7828122 |
| concepts[9].display_name | Total least squares |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.058128952980041504 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C106131492 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[11].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/partial-least-squares-regression |
| keywords[0].score | 0.8584568500518799 |
| keywords[0].display_name | Partial least squares regression |
| keywords[1].id | https://openalex.org/keywords/iteratively-reweighted-least-squares |
| keywords[1].score | 0.5075997114181519 |
| keywords[1].display_name | Iteratively reweighted least squares |
| keywords[2].id | https://openalex.org/keywords/regression |
| keywords[2].score | 0.49085289239883423 |
| keywords[2].display_name | Regression |
| keywords[3].id | https://openalex.org/keywords/sampling |
| keywords[3].score | 0.4766279458999634 |
| keywords[3].display_name | Sampling (signal processing) |
| keywords[4].id | https://openalex.org/keywords/regression-analysis |
| keywords[4].score | 0.4500581920146942 |
| keywords[4].display_name | Regression analysis |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.41649022698402405 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.41476595401763916 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.40848758816719055 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3207990825176239 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/total-least-squares |
| keywords[9].score | 0.30326753854751587 |
| keywords[9].display_name | Total least squares |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.058128952980041504 |
| keywords[10].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1016/j.agrcom.2024.100053 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387289750 |
| locations[0].source.issn | 2949-7981 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2949-7981 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Agriculture Communications |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Agriculture Communications |
| locations[0].landing_page_url | https://doi.org/10.1016/j.agrcom.2024.100053 |
| locations[1].id | pmh:oai:doaj.org/article:d801f575f4a748bc8850391b358d852a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Agriculture Communications, Vol 2, Iss 3, Pp 100053- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/d801f575f4a748bc8850391b358d852a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5084119252 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2266-7589 |
| authorships[0].author.display_name | Yonghong Shi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135836153 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Food Science, Shenyang Agricultural University, Shenyang 110866, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[0].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210099012 |
| authorships[0].institutions[1].ror | https://ror.org/01s5dew76 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210099012, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Institute of Food Science and Technology |
| authorships[0].institutions[2].id | https://openalex.org/I135836153 |
| authorships[0].institutions[2].ror | https://ror.org/01n7x9n08 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I135836153 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Shenyang Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yonghong Shi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Food Science, Shenyang Agricultural University, Shenyang 110866, China, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[1].author.id | https://openalex.org/A5103190506 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1324-7737 |
| authorships[1].author.display_name | Fengzhong Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[1].affiliations[1].raw_affiliation_string | Shandong Yuhuang Grain and Oil Food Co., Ltd., Linyi 273300, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[1].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210099012 |
| authorships[1].institutions[1].ror | https://ror.org/01s5dew76 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210099012, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Institute of Food Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fengzhong Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China, Shandong Yuhuang Grain and Oil Food Co., Ltd., Linyi 273300, China |
| authorships[2].author.id | https://openalex.org/A5100405598 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9165-8515 |
| authorships[2].author.display_name | Hong Xie |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I135836153 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Food Science, Shenyang Agricultural University, Shenyang 110866, China |
| authorships[2].institutions[0].id | https://openalex.org/I135836153 |
| authorships[2].institutions[0].ror | https://ror.org/01n7x9n08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I135836153 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenyang Agricultural University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hong Xie |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Food Science, Shenyang Agricultural University, Shenyang 110866, China |
| authorships[3].author.id | https://openalex.org/A5110603087 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8981-8420 |
| authorships[3].author.display_name | Bei Fan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[3].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210099012 |
| authorships[3].institutions[1].ror | https://ror.org/01s5dew76 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210099012, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Institute of Food Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bei Fan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[4].author.id | https://openalex.org/A5100408793 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0472-7314 |
| authorships[4].author.display_name | Long Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[4].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210099012 |
| authorships[4].institutions[1].ror | https://ror.org/01s5dew76 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210099012, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Institute of Food Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Long li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[5].author.id | https://openalex.org/A5102748889 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6991-2222 |
| authorships[5].author.display_name | Zhiqiang Kong |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210097978, https://openalex.org/I4210138501 |
| authorships[5].affiliations[0].raw_affiliation_string | State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[5].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[5].institutions[1].id | https://openalex.org/I4210097978 |
| authorships[5].institutions[1].ror | https://ror.org/0111f7045 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210097978, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Institute of Plant Protection |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhiqiang Kong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[6].author.id | https://openalex.org/A5079247867 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0571-4745 |
| authorships[6].author.display_name | Yatao Huang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| authorships[6].affiliations[0].raw_affiliation_string | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[6].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210099012 |
| authorships[6].institutions[1].ror | https://ror.org/01s5dew76 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210099012, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Institute of Food Science and Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yatao Huang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[7].author.id | https://openalex.org/A5100424176 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4415-7213 |
| authorships[7].author.display_name | Zhipeng Wang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[7].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[7].institutions[0].type | government |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[7].institutions[1].id | https://openalex.org/I4210099012 |
| authorships[7].institutions[1].ror | https://ror.org/01s5dew76 |
| authorships[7].institutions[1].type | facility |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210099012, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Institute of Food Science and Technology |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhipeng Wang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[8].author.id | https://openalex.org/A5114207314 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Daoyong Lei |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| authorships[8].affiliations[0].raw_affiliation_string | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[8].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[8].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[8].institutions[0].type | government |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[8].institutions[1].id | https://openalex.org/I4210099012 |
| authorships[8].institutions[1].ror | https://ror.org/01s5dew76 |
| authorships[8].institutions[1].type | facility |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210099012, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | Institute of Food Science and Technology |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Daoyong Lei |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[9].author.id | https://openalex.org/A5100723466 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-9738-4044 |
| authorships[9].author.display_name | Minmin Li |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| authorships[9].affiliations[0].raw_affiliation_string | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I4210138501 |
| authorships[9].affiliations[1].raw_affiliation_string | Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China |
| authorships[9].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[9].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[9].institutions[0].type | government |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[9].institutions[1].id | https://openalex.org/I4210099012 |
| authorships[9].institutions[1].ror | https://ror.org/01s5dew76 |
| authorships[9].institutions[1].type | facility |
| authorships[9].institutions[1].lineage | https://openalex.org/I4210099012, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[9].institutions[1].country_code | CN |
| authorships[9].institutions[1].display_name | Institute of Food Science and Technology |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Minmin Li |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China, Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.agrcom.2024.100053 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-08-14T00:00:00 |
| display_name | Model for prediction of pesticide residues in soybean oil using partial least squares regression with molecular descriptors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11423 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1106 |
| primary_topic.subfield.display_name | Food Science |
| primary_topic.display_name | Pesticide Residue Analysis and Safety |
| related_works | https://openalex.org/W2030255580, https://openalex.org/W2359803370, https://openalex.org/W2429686810, https://openalex.org/W4380487384, https://openalex.org/W4387810207, https://openalex.org/W117925321, https://openalex.org/W2388513917, https://openalex.org/W2021174884, https://openalex.org/W2394208570, https://openalex.org/W2192745683 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.agrcom.2024.100053 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387289750 |
| best_oa_location.source.issn | 2949-7981 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2949-7981 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Agriculture Communications |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Agriculture Communications |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.agrcom.2024.100053 |
| primary_location.id | doi:10.1016/j.agrcom.2024.100053 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387289750 |
| primary_location.source.issn | 2949-7981 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2949-7981 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Agriculture Communications |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Agriculture Communications |
| primary_location.landing_page_url | https://doi.org/10.1016/j.agrcom.2024.100053 |
| publication_date | 2024-08-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2018259965, https://openalex.org/W3207993679, https://openalex.org/W4383196860, https://openalex.org/W2050254761, https://openalex.org/W2126337970, https://openalex.org/W3044028854, https://openalex.org/W2627019740, https://openalex.org/W2996310809, https://openalex.org/W2023717738, https://openalex.org/W3203075483, https://openalex.org/W3041286284, https://openalex.org/W3200893684, https://openalex.org/W4386707959, https://openalex.org/W1997270149, https://openalex.org/W4281564834, https://openalex.org/W6857183780, https://openalex.org/W2942856966, https://openalex.org/W1542066560, https://openalex.org/W2109355959, https://openalex.org/W6749644245, https://openalex.org/W3135893384, https://openalex.org/W2317595661, https://openalex.org/W4360592071, https://openalex.org/W2209625982, https://openalex.org/W2900617177, https://openalex.org/W3091868027, https://openalex.org/W2103043403, https://openalex.org/W4206430503, https://openalex.org/W2012980667, https://openalex.org/W2121589257, https://openalex.org/W2293883881, https://openalex.org/W3035848495, https://openalex.org/W2530632287, https://openalex.org/W2069613287, https://openalex.org/W3128460238, https://openalex.org/W4307458117, https://openalex.org/W2021913097, https://openalex.org/W4200215987, https://openalex.org/W4387709382, https://openalex.org/W2791355014 |
| referenced_works_count | 40 |
| abstract_inverted_index.A | 98 |
| abstract_inverted_index.a | 2, 132, 161 |
| abstract_inverted_index.54 | 22 |
| abstract_inverted_index.Rc | 65, 82 |
| abstract_inverted_index.Rp | 71, 88 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.in | 49, 175 |
| abstract_inverted_index.it | 130 |
| abstract_inverted_index.of | 21, 36, 103, 114, 155 |
| abstract_inverted_index.on | 10, 56 |
| abstract_inverted_index.to | 16, 32, 43, 108 |
| abstract_inverted_index.(Rp | 142 |
| abstract_inverted_index.Our | 158 |
| abstract_inverted_index.The | 120 |
| abstract_inverted_index.and | 52, 74, 81, 91, 100, 112, 138, 148, 153, 167 |
| abstract_inverted_index.for | 78, 95, 163, 173 |
| abstract_inverted_index.oil | 26, 80 |
| abstract_inverted_index.the | 18, 34, 37, 45, 50, 53, 62, 110, 151, 169 |
| abstract_inverted_index.was | 106, 122 |
| abstract_inverted_index.Four | 39 |
| abstract_inverted_index.best | 63 |
| abstract_inverted_index.data | 126 |
| abstract_inverted_index.food | 118 |
| abstract_inverted_index.from | 127 |
| abstract_inverted_index.high | 133 |
| abstract_inverted_index.oil. | 97 |
| abstract_inverted_index.risk | 166 |
| abstract_inverted_index.used | 42, 48 |
| abstract_inverted_index.were | 30, 41 |
| abstract_inverted_index.with | 59 |
| abstract_inverted_index.< | 146 |
| abstract_inverted_index.= | 66, 69, 72, 76, 83, 86, 89, 93 |
| abstract_inverted_index.> | 143 |
| abstract_inverted_index.RMSEc | 68, 85 |
| abstract_inverted_index.RMSEp | 75, 92, 145 |
| abstract_inverted_index.based | 9, 55 |
| abstract_inverted_index.least | 4 |
| abstract_inverted_index.model | 8, 54, 102, 121, 159 |
| abstract_inverted_index.rapid | 99 |
| abstract_inverted_index.using | 125 |
| abstract_inverted_index.(CARS) | 15 |
| abstract_inverted_index.(PLSR) | 7 |
| abstract_inverted_index.during | 24, 117 |
| abstract_inverted_index.limits | 172 |
| abstract_inverted_index.model, | 51 |
| abstract_inverted_index.model. | 38 |
| abstract_inverted_index.safety | 165 |
| abstract_inverted_index.values | 57 |
| abstract_inverted_index.ChemoPy | 60 |
| abstract_inverted_index.between | 136 |
| abstract_inverted_index.compute | 44 |
| abstract_inverted_index.factors | 20, 105 |
| abstract_inverted_index.further | 123 |
| abstract_inverted_index.improve | 33 |
| abstract_inverted_index.maximum | 170 |
| abstract_inverted_index.partial | 3 |
| abstract_inverted_index.predict | 17, 109 |
| abstract_inverted_index.residue | 140, 171 |
| abstract_inverted_index.soybean | 25 |
| abstract_inverted_index.squares | 5 |
| abstract_inverted_index.0.54 | 77 |
| abstract_inverted_index.0.59 | 94 |
| abstract_inverted_index.adaptive | 12 |
| abstract_inverted_index.computed | 58 |
| abstract_inverted_index.measured | 139 |
| abstract_inverted_index.produced | 61 |
| abstract_inverted_index.provides | 160 |
| abstract_inverted_index.residues | 116 |
| abstract_inverted_index.results: | 64 |
| abstract_inverted_index.sampling | 14 |
| abstract_inverted_index.selected | 31 |
| abstract_inverted_index.0.67, | 70 |
| abstract_inverted_index.0.72) | 147 |
| abstract_inverted_index.0.73, | 87 |
| abstract_inverted_index.0.91, | 73 |
| abstract_inverted_index.0.93, | 84, 90, 144 |
| abstract_inverted_index.0.94, | 67 |
| abstract_inverted_index.assessing | 164 |
| abstract_inverted_index.behaviour | 111, 154 |
| abstract_inverted_index.developed | 1 |
| abstract_inverted_index.molecular | 46 |
| abstract_inverted_index.pesticide | 115, 156 |
| abstract_inverted_index.predicted | 137, 150 |
| abstract_inverted_index.processed | 176 |
| abstract_inverted_index.products. | 177 |
| abstract_inverted_index.reference | 162 |
| abstract_inverted_index.residues. | 157 |
| abstract_inverted_index.soybeans; | 129 |
| abstract_inverted_index.validated | 124 |
| abstract_inverted_index.variables | 29 |
| abstract_inverted_index.pesticides | 23, 174 |
| abstract_inverted_index.processing | 19, 104 |
| abstract_inverted_index.regression | 6 |
| abstract_inverted_index.reweighted | 13 |
| abstract_inverted_index.calculators | 40 |
| abstract_inverted_index.coefficient | 135 |
| abstract_inverted_index.competitive | 11 |
| abstract_inverted_index.correlation | 134 |
| abstract_inverted_index.descriptors | 47 |
| abstract_inverted_index.determining | 168 |
| abstract_inverted_index.established | 107 |
| abstract_inverted_index.field-grown | 128 |
| abstract_inverted_index.hot-pressed | 79 |
| abstract_inverted_index.performance | 35 |
| abstract_inverted_index.processing. | 27, 119 |
| abstract_inverted_index.cold-pressed | 96 |
| abstract_inverted_index.demonstrated | 131 |
| abstract_inverted_index.distribution | 113, 152 |
| abstract_inverted_index.quantitative | 101 |
| abstract_inverted_index.successfully | 149 |
| abstract_inverted_index.Characteristic | 28 |
| abstract_inverted_index.concentrations | 141 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5100723466 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I4210099012, https://openalex.org/I4210138501 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.84244313 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |