Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.3390/s17102335
MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s17102335
- https://www.mdpi.com/1424-8220/17/10/2335/pdf
- OA Status
- gold
- Cited By
- 59
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2763744422
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2763744422Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s17102335Digital Object Identifier
- Title
-
Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm OptimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-10-13Full publication date if available
- Authors
-
Haifeng Xing, Bo Hou, Zhihui Lin, Meifeng GuoList of authors in order
- Landing page
-
https://doi.org/10.3390/s17102335Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/17/10/2335/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/17/10/2335/pdfDirect OA link when available
- Concepts
-
Gyroscope, Vibrating structure gyroscope, Particle swarm optimization, Control theory (sociology), Chaotic, Support vector machine, Noise (video), Compensation (psychology), Microelectromechanical systems, Allan variance, Computer science, Algorithm, Standard deviation, Electronic engineering, Engineering, Artificial intelligence, Physics, Mathematics, Statistics, Aerospace engineering, Image (mathematics), Control (management), Psychoanalysis, Psychology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
59Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 8, 2022: 10, 2021: 10Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2763744422 |
|---|---|
| doi | https://doi.org/10.3390/s17102335 |
| ids.doi | https://doi.org/10.3390/s17102335 |
| ids.mag | 2763744422 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/29027952 |
| ids.openalex | https://openalex.org/W2763744422 |
| fwci | 5.39530019 |
| type | article |
| title | Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization |
| biblio.issue | 10 |
| biblio.volume | 17 |
| biblio.last_page | 2335 |
| biblio.first_page | 2335 |
| topics[0].id | https://openalex.org/T13717 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.991599977016449 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Algorithms and Applications |
| topics[1].id | https://openalex.org/T11325 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9896000027656555 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Inertial Sensor and Navigation |
| topics[2].id | https://openalex.org/T13734 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Computational Techniques and Applications |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C158488048 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8831177949905396 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q483400 |
| concepts[0].display_name | Gyroscope |
| concepts[1].id | https://openalex.org/C72768775 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8139916062355042 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844456 |
| concepts[1].display_name | Vibrating structure gyroscope |
| concepts[2].id | https://openalex.org/C85617194 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5689287781715393 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[2].display_name | Particle swarm optimization |
| concepts[3].id | https://openalex.org/C47446073 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5523121356964111 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[3].display_name | Control theory (sociology) |
| concepts[4].id | https://openalex.org/C2777052490 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4913899004459381 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5072826 |
| concepts[4].display_name | Chaotic |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4838332235813141 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.47903576493263245 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C2780023022 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4541548788547516 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1338171 |
| concepts[7].display_name | Compensation (psychology) |
| concepts[8].id | https://openalex.org/C37977207 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43587830662727356 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175561 |
| concepts[8].display_name | Microelectromechanical systems |
| concepts[9].id | https://openalex.org/C5722023 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4307922124862671 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1440227 |
| concepts[9].display_name | Allan variance |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4271775782108307 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4086800217628479 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C22679943 |
| concepts[12].level | 2 |
| concepts[12].score | 0.35137325525283813 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q159375 |
| concepts[12].display_name | Standard deviation |
| concepts[13].id | https://openalex.org/C24326235 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3392922878265381 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[13].display_name | Electronic engineering |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.31191155314445496 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2892487645149231 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.23013976216316223 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.21166831254959106 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.09029063582420349 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C146978453 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[19].display_name | Aerospace engineering |
| concepts[20].id | https://openalex.org/C115961682 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[20].display_name | Image (mathematics) |
| concepts[21].id | https://openalex.org/C2775924081 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[21].display_name | Control (management) |
| concepts[22].id | https://openalex.org/C11171543 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q41630 |
| concepts[22].display_name | Psychoanalysis |
| concepts[23].id | https://openalex.org/C15744967 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[23].display_name | Psychology |
| concepts[24].id | https://openalex.org/C62520636 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[24].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/gyroscope |
| keywords[0].score | 0.8831177949905396 |
| keywords[0].display_name | Gyroscope |
| keywords[1].id | https://openalex.org/keywords/vibrating-structure-gyroscope |
| keywords[1].score | 0.8139916062355042 |
| keywords[1].display_name | Vibrating structure gyroscope |
| keywords[2].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[2].score | 0.5689287781715393 |
| keywords[2].display_name | Particle swarm optimization |
| keywords[3].id | https://openalex.org/keywords/control-theory |
| keywords[3].score | 0.5523121356964111 |
| keywords[3].display_name | Control theory (sociology) |
| keywords[4].id | https://openalex.org/keywords/chaotic |
| keywords[4].score | 0.4913899004459381 |
| keywords[4].display_name | Chaotic |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.4838332235813141 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.47903576493263245 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/compensation |
| keywords[7].score | 0.4541548788547516 |
| keywords[7].display_name | Compensation (psychology) |
| keywords[8].id | https://openalex.org/keywords/microelectromechanical-systems |
| keywords[8].score | 0.43587830662727356 |
| keywords[8].display_name | Microelectromechanical systems |
| keywords[9].id | https://openalex.org/keywords/allan-variance |
| keywords[9].score | 0.4307922124862671 |
| keywords[9].display_name | Allan variance |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.4271775782108307 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.4086800217628479 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/standard-deviation |
| keywords[12].score | 0.35137325525283813 |
| keywords[12].display_name | Standard deviation |
| keywords[13].id | https://openalex.org/keywords/electronic-engineering |
| keywords[13].score | 0.3392922878265381 |
| keywords[13].display_name | Electronic engineering |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.31191155314445496 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.2892487645149231 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.23013976216316223 |
| keywords[16].display_name | Physics |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.21166831254959106 |
| keywords[17].display_name | Mathematics |
| keywords[18].id | https://openalex.org/keywords/statistics |
| keywords[18].score | 0.09029063582420349 |
| keywords[18].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.3390/s17102335 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/17/10/2335/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s17102335 |
| locations[1].id | pmid:29027952 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/29027952 |
| locations[2].id | pmh:oai:doaj.org/article:fcb3acff8bf444ec9df12484dd9ba495 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 17, Iss 10, p 2335 (2017) |
| locations[2].landing_page_url | https://doaj.org/article/fcb3acff8bf444ec9df12484dd9ba495 |
| locations[3].id | pmh:oai:europepmc.org:4602361 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5677295 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/17/10/2335/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 17; Issue 10; Pages: 2335 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s17102335 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:5677295 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | http://doi.org/10.3390/s17102335 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5016734342 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6497-3969 |
| authorships[0].author.display_name | Haifeng Xing |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing100084, China |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haifeng Xing |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing100084, China |
| authorships[1].author.id | https://openalex.org/A5101715133 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4030-0716 |
| authorships[1].author.display_name | Bo Hou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[1].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing100084, China |
| authorships[1].institutions[0].id | https://openalex.org/I99065089 |
| authorships[1].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tsinghua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bo Hou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing100084, China |
| authorships[2].author.id | https://openalex.org/A5054238848 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0949-0635 |
| authorships[2].author.display_name | Zhihui Lin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[2].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing100084, China |
| authorships[2].institutions[0].id | https://openalex.org/I99065089 |
| authorships[2].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tsinghua University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhihui Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing100084, China |
| authorships[3].author.id | https://openalex.org/A5101521462 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9068-3973 |
| authorships[3].author.display_name | Meifeng Guo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing100084, China |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Meifeng Guo |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing100084, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/17/10/2335/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13717 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.991599977016449 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Algorithms and Applications |
| related_works | https://openalex.org/W4320019880, https://openalex.org/W2018733833, https://openalex.org/W2138812454, https://openalex.org/W2185308786, https://openalex.org/W2039007435, https://openalex.org/W2127249521, https://openalex.org/W2150147713, https://openalex.org/W2042168727, https://openalex.org/W1483532916, https://openalex.org/W2347235354 |
| cited_by_count | 59 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 10 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 8 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 11 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 8 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s17102335 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/17/10/2335/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s17102335 |
| primary_location.id | doi:10.3390/s17102335 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/17/10/2335/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s17102335 |
| publication_date | 2017-10-13 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2603188784, https://openalex.org/W2287002002, https://openalex.org/W2493705743, https://openalex.org/W2229628845, https://openalex.org/W2621120773, https://openalex.org/W2328245487, https://openalex.org/W2545480589, https://openalex.org/W1981199944, https://openalex.org/W1991590832, https://openalex.org/W1968485072, https://openalex.org/W292683205, https://openalex.org/W2219598583, https://openalex.org/W2572241292, https://openalex.org/W2287649346, https://openalex.org/W2343523717, https://openalex.org/W1596717185, https://openalex.org/W2606466198, https://openalex.org/W2578399363, https://openalex.org/W1530925267, https://openalex.org/W2366580662, https://openalex.org/W2077646547, https://openalex.org/W1996576885, https://openalex.org/W2522279204, https://openalex.org/W2045105429, https://openalex.org/W1761777809, https://openalex.org/W2038347420, https://openalex.org/W2107595860, https://openalex.org/W1724210103, https://openalex.org/W2056550357, https://openalex.org/W2274616290, https://openalex.org/W2591426394, https://openalex.org/W6736699549, https://openalex.org/W2586352512, https://openalex.org/W2062238863, https://openalex.org/W2314064624, https://openalex.org/W2134690944, https://openalex.org/W2134383471, https://openalex.org/W2607120241 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 128 |
| abstract_inverted_index.It | 23 |
| abstract_inverted_index.by | 81 |
| abstract_inverted_index.in | 55 |
| abstract_inverted_index.it | 36 |
| abstract_inverted_index.of | 41, 59, 88, 103, 135, 138, 147, 150, 175, 184 |
| abstract_inverted_index.to | 10, 28, 48, 52, 159 |
| abstract_inverted_index.PSR | 69 |
| abstract_inverted_index.and | 20, 30, 73, 117, 157, 162, 180 |
| abstract_inverted_index.but | 13 |
| abstract_inverted_index.can | 37, 171 |
| abstract_inverted_index.for | 77, 187 |
| abstract_inverted_index.had | 127 |
| abstract_inverted_index.has | 18, 24, 46 |
| abstract_inverted_index.the | 32, 39, 56, 64, 75, 78, 90, 101, 105, 118, 121, 125, 133, 144, 168, 173, 182 |
| abstract_inverted_index.use | 49 |
| abstract_inverted_index.CPSO | 95 |
| abstract_inverted_index.MEMS | 0, 14, 60, 106, 139, 176, 189 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.data | 58, 67, 80, 152 |
| abstract_inverted_index.from | 154 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.much | 26 |
| abstract_inverted_index.that | 124, 167 |
| abstract_inverted_index.then | 62 |
| abstract_inverted_index.this | 185 |
| abstract_inverted_index.were | 92 |
| abstract_inverted_index.with | 68, 110 |
| abstract_inverted_index.(back | 112 |
| abstract_inverted_index.LSSVM | 82 |
| abstract_inverted_index.Using | 132 |
| abstract_inverted_index.data, | 143 |
| abstract_inverted_index.drift | 17, 34, 66, 109, 142, 179 |
| abstract_inverted_index.model | 29, 76 |
| abstract_inverted_index.noise | 54 |
| abstract_inverted_index.paper | 45 |
| abstract_inverted_index.space | 71 |
| abstract_inverted_index.swarm | 98 |
| abstract_inverted_index.three | 136, 148 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.which | 89, 165 |
| abstract_inverted_index.(Micro | 1 |
| abstract_inverted_index.(least | 83 |
| abstract_inverted_index.(phase | 70 |
| abstract_inverted_index.BP-ANN | 111 |
| abstract_inverted_index.better | 129 |
| abstract_inverted_index.drift. | 192 |
| abstract_inverted_index.effect | 102 |
| abstract_inverted_index.groups | 137, 149 |
| abstract_inverted_index.latter | 126 |
| abstract_inverted_index.method | 170, 186 |
| abstract_inverted_index.neural | 115 |
| abstract_inverted_index.random | 16, 33, 65, 108, 141, 178, 191 |
| abstract_inverted_index.reduce | 53, 172 |
| abstract_inverted_index.showed | 123 |
| abstract_inverted_index.vector | 86 |
| abstract_inverted_index.widely | 8 |
| abstract_inverted_index.Electro | 2 |
| abstract_inverted_index.System) | 4 |
| abstract_inverted_index.applied | 9 |
| abstract_inverted_index.because | 35 |
| abstract_inverted_index.dropped | 153 |
| abstract_inverted_index.fields, | 12 |
| abstract_inverted_index.improve | 38 |
| abstract_inverted_index.method, | 120 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.squares | 84 |
| abstract_inverted_index.support | 85 |
| abstract_inverted_index.various | 11 |
| abstract_inverted_index.wavelet | 50 |
| abstract_inverted_index.(chaotic | 96 |
| abstract_inverted_index.devices. | 43 |
| abstract_inverted_index.inertial | 42 |
| abstract_inverted_index.modeling | 104, 188 |
| abstract_inverted_index.network) | 116 |
| abstract_inverted_index.original | 57 |
| abstract_inverted_index.particle | 97 |
| abstract_inverted_index.proposed | 47, 119, 169 |
| abstract_inverted_index.standard | 145 |
| abstract_inverted_index.verified | 181 |
| abstract_inverted_index.Comparing | 100 |
| abstract_inverted_index.accuracy. | 131 |
| abstract_inverted_index.attention | 27 |
| abstract_inverted_index.attracted | 25 |
| abstract_inverted_index.deviation | 146 |
| abstract_inverted_index.establish | 74 |
| abstract_inverted_index.filtering | 51 |
| abstract_inverted_index.gyroscope | 15, 107, 140, 177, 190 |
| abstract_inverted_index.influence | 174 |
| abstract_inverted_index.machine), | 87 |
| abstract_inverted_index.nonlinear | 19 |
| abstract_inverted_index.optimized | 93 |
| abstract_inverted_index.precision | 40 |
| abstract_inverted_index.Mechanical | 3 |
| abstract_inverted_index.artificial | 114 |
| abstract_inverted_index.compensate | 31 |
| abstract_inverted_index.gyroscopes | 5 |
| abstract_inverted_index.parameters | 91 |
| abstract_inverted_index.prediction | 130 |
| abstract_inverted_index.0.00072°/s | 161 |
| abstract_inverted_index.0.00328°/s | 158 |
| abstract_inverted_index.gyroscopes, | 61 |
| abstract_inverted_index.propagation | 113 |
| abstract_inverted_index.reconstruct | 63 |
| abstract_inverted_index.0.00061°/s, | 163 |
| abstract_inverted_index.0.00065°/s, | 160 |
| abstract_inverted_index.0.00354°/s, | 155 |
| abstract_inverted_index.0.00412°/s, | 156 |
| abstract_inverted_index.compensation | 134 |
| abstract_inverted_index.demonstrated | 166 |
| abstract_inverted_index.experimental | 151 |
| abstract_inverted_index.effectiveness | 183 |
| abstract_inverted_index.reconstructed | 79 |
| abstract_inverted_index.respectively, | 164 |
| abstract_inverted_index.non-stationary | 21 |
| abstract_inverted_index.optimization). | 99 |
| abstract_inverted_index.characteristics. | 22 |
| abstract_inverted_index.reconstruction), | 72 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5101521462 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I99065089 |
| citation_normalized_percentile.value | 0.96205227 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |