Modeling and prediction of climate change impacts on water resources vulnerability: A multi-model approach Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.jenvman.2025.126025
In a rapidly changing world, uncontrolled climate change worsens water scarcity disrupting hydrological cycles and hindering sustainable development. Addressing water resources vulnerability requires holistic approaches to better understand complex systems, mitigate risks from changing weather patterns, and develop adaptive water management strategies. In this study, we modeled climate change impacts on water resource vulnerability using machine learning (ML) and SWAT model based on CMIP6 Global Climate Model (GCMs) under Shared Socioeconomic Pathway (SSP). Six ML models were evaluated to reliably predict hydroclimatic events; Extremely Randomised Trees (ERT) and Categorical Boosting (CatBoost) performed best for simulating ensemble climate interactions. The statistical indicators confirmed model reliability reducing input uncertainties with bias-corrected datasets. The ensemble SWAT model simulation showed a good agreement between simulated and observed values (R2 = 93 %, NSE = 91 %, and PBIAS = -1.08 %) for calibration and (R2 = 94 %, NSE = 93 %, and PBIAS = -2.32 %) for validation periods. Furthermore, we developed a novel Hydrologic Vulnerability Index (HVI) framework based on water balance components to quantify watershed vulnerability dynamics across baseline and future scenarios. The HVI ranged from low to extreme, with maximum lower values (54.03 %) observed at baseline, indicating resilience to hydrological stress, and higher values indicating severe vulnerability (43.45 %) at SSP245, indicating extreme drought conditions. The HVI framework integrates climate projections with actionable insights, offering a comprehensive approach to sustainable water management, adaptive infrastructure, and targeted interventions. Hence, innovative policies are critical to address extreme HVIs ensuring resilience against water scarcity and ecosystem degradation. This study underscores the importance of coupling data-driven hydrological analysis with climate responsiveness for effective watershed and environmental sustainability. These results demonstrate the importance of integrating various perspectives and strategies to address both short- and long-term climatic problems, by employing adaptive management practices to ensure sufficient water and ecosystem resilience.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jenvman.2025.126025
- OA Status
- hybrid
- Cited By
- 2
- References
- 89
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410925082
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410925082Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jenvman.2025.126025Digital Object Identifier
- Title
-
Modeling and prediction of climate change impacts on water resources vulnerability: A multi-model approachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-30Full publication date if available
- Authors
-
Tarekegn Dejen Mengistu, Sun Woo Chang, Il-Moon ChungList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jenvman.2025.126025Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jenvman.2025.126025Direct OA link when available
- Concepts
-
Climate change, Vulnerability (computing), Water resources, Environmental science, Environmental resource management, Vulnerability assessment, Environmental planning, Computer science, Ecology, Geology, Psychological resilience, Oceanography, Computer security, Psychology, Psychotherapist, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
89Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410925082 |
|---|---|
| doi | https://doi.org/10.1016/j.jenvman.2025.126025 |
| ids.doi | https://doi.org/10.1016/j.jenvman.2025.126025 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40449424 |
| ids.openalex | https://openalex.org/W4410925082 |
| fwci | 3.88835173 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D057231 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Climate Change |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D062066 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Water Resources |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008962 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Models, Theoretical |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D014881 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Water Supply |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D057231 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Climate Change |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D062066 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Water Resources |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008962 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Models, Theoretical |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D014881 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Water Supply |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069550 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Machine Learning |
| type | article |
| title | Modeling and prediction of climate change impacts on water resources vulnerability: A multi-model approach |
| biblio.issue | |
| biblio.volume | 388 |
| biblio.last_page | 126025 |
| biblio.first_page | 126025 |
| topics[0].id | https://openalex.org/T10330 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Hydrology and Watershed Management Studies |
| topics[1].id | https://openalex.org/T10969 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Water resources management and optimization |
| topics[2].id | https://openalex.org/T12724 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Water-Energy-Food Nexus Studies |
| is_xpac | False |
| apc_list.value | 3700 |
| apc_list.currency | USD |
| apc_list.value_usd | 3700 |
| apc_paid.value | 3700 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3700 |
| concepts[0].id | https://openalex.org/C132651083 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7095457315444946 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[0].display_name | Climate change |
| concepts[1].id | https://openalex.org/C95713431 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5740569233894348 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q631425 |
| concepts[1].display_name | Vulnerability (computing) |
| concepts[2].id | https://openalex.org/C153823671 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5597949028015137 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1049799 |
| concepts[2].display_name | Water resources |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5124443173408508 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C107826830 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4836364984512329 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q929380 |
| concepts[4].display_name | Environmental resource management |
| concepts[5].id | https://openalex.org/C167063184 |
| concepts[5].level | 3 |
| concepts[5].score | 0.42329853773117065 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1400839 |
| concepts[5].display_name | Vulnerability assessment |
| concepts[6].id | https://openalex.org/C91375879 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35206276178359985 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q15473274 |
| concepts[6].display_name | Environmental planning |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.34382742643356323 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C18903297 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1355735957622528 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[8].display_name | Ecology |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.13252604007720947 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C137176749 |
| concepts[10].level | 2 |
| concepts[10].score | 0.11368954181671143 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4105337 |
| concepts[10].display_name | Psychological resilience |
| concepts[11].id | https://openalex.org/C111368507 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09682866930961609 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[11].display_name | Oceanography |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C542102704 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[14].display_name | Psychotherapist |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/climate-change |
| keywords[0].score | 0.7095457315444946 |
| keywords[0].display_name | Climate change |
| keywords[1].id | https://openalex.org/keywords/vulnerability |
| keywords[1].score | 0.5740569233894348 |
| keywords[1].display_name | Vulnerability (computing) |
| keywords[2].id | https://openalex.org/keywords/water-resources |
| keywords[2].score | 0.5597949028015137 |
| keywords[2].display_name | Water resources |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.5124443173408508 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/environmental-resource-management |
| keywords[4].score | 0.4836364984512329 |
| keywords[4].display_name | Environmental resource management |
| keywords[5].id | https://openalex.org/keywords/vulnerability-assessment |
| keywords[5].score | 0.42329853773117065 |
| keywords[5].display_name | Vulnerability assessment |
| keywords[6].id | https://openalex.org/keywords/environmental-planning |
| keywords[6].score | 0.35206276178359985 |
| keywords[6].display_name | Environmental planning |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.34382742643356323 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/ecology |
| keywords[8].score | 0.1355735957622528 |
| keywords[8].display_name | Ecology |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.13252604007720947 |
| keywords[9].display_name | Geology |
| keywords[10].id | https://openalex.org/keywords/psychological-resilience |
| keywords[10].score | 0.11368954181671143 |
| keywords[10].display_name | Psychological resilience |
| keywords[11].id | https://openalex.org/keywords/oceanography |
| keywords[11].score | 0.09682866930961609 |
| keywords[11].display_name | Oceanography |
| language | en |
| locations[0].id | doi:10.1016/j.jenvman.2025.126025 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S44455300 |
| locations[0].source.issn | 0301-4797, 1095-8630 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0301-4797 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Environmental Management |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Environmental Management |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jenvman.2025.126025 |
| locations[1].id | pmid:40449424 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of environmental management |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40449424 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5090824459 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9812-3460 |
| authorships[0].author.display_name | Tarekegn Dejen Mengistu |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3019177047, https://openalex.org/I88761825 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil & Environmental Engineering, The University of Science and Technology (UST), Daejeon 34113, South Korea; Korea Institute of Civil Engineering & Building Technology, Goyang 10223, South Korea. Electronic address: [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I3019177047 |
| authorships[0].institutions[0].ror | https://ror.org/035enhp47 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I3019177047 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Korea Institute of Civil Engineering and Building Technology |
| authorships[0].institutions[1].id | https://openalex.org/I88761825 |
| authorships[0].institutions[1].ror | https://ror.org/000qzf213 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I88761825 |
| authorships[0].institutions[1].country_code | KR |
| authorships[0].institutions[1].display_name | Korea University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tarekegn Dejen Mengistu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil & Environmental Engineering, The University of Science and Technology (UST), Daejeon 34113, South Korea; Korea Institute of Civil Engineering & Building Technology, Goyang 10223, South Korea. Electronic address: [email protected]. |
| authorships[1].author.id | https://openalex.org/A5025676011 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9775-9475 |
| authorships[1].author.display_name | Sun Woo Chang |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3019177047, https://openalex.org/I88761825 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil & Environmental Engineering, The University of Science and Technology (UST), Daejeon 34113, South Korea; Korea Institute of Civil Engineering & Building Technology, Goyang 10223, South Korea. Electronic address: [email protected]. |
| authorships[1].institutions[0].id | https://openalex.org/I3019177047 |
| authorships[1].institutions[0].ror | https://ror.org/035enhp47 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I3019177047 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Korea Institute of Civil Engineering and Building Technology |
| authorships[1].institutions[1].id | https://openalex.org/I88761825 |
| authorships[1].institutions[1].ror | https://ror.org/000qzf213 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I88761825 |
| authorships[1].institutions[1].country_code | KR |
| authorships[1].institutions[1].display_name | Korea University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sun Woo Chang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil & Environmental Engineering, The University of Science and Technology (UST), Daejeon 34113, South Korea; Korea Institute of Civil Engineering & Building Technology, Goyang 10223, South Korea. Electronic address: [email protected]. |
| authorships[2].author.id | https://openalex.org/A5058512457 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0163-7305 |
| authorships[2].author.display_name | Il-Moon Chung |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3019177047, https://openalex.org/I88761825 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil & Environmental Engineering, The University of Science and Technology (UST), Daejeon 34113, South Korea; Korea Institute of Civil Engineering & Building Technology, Goyang 10223, South Korea. Electronic address: [email protected]. |
| authorships[2].institutions[0].id | https://openalex.org/I3019177047 |
| authorships[2].institutions[0].ror | https://ror.org/035enhp47 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I3019177047 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Korea Institute of Civil Engineering and Building Technology |
| authorships[2].institutions[1].id | https://openalex.org/I88761825 |
| authorships[2].institutions[1].ror | https://ror.org/000qzf213 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I88761825 |
| authorships[2].institutions[1].country_code | KR |
| authorships[2].institutions[1].display_name | Korea University of Science and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Il-Moon Chung |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Civil & Environmental Engineering, The University of Science and Technology (UST), Daejeon 34113, South Korea; Korea Institute of Civil Engineering & Building Technology, Goyang 10223, South Korea. Electronic address: [email protected]. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jenvman.2025.126025 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modeling and prediction of climate change impacts on water resources vulnerability: A multi-model approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10330 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Hydrology and Watershed Management Studies |
| related_works | https://openalex.org/W1883246888, https://openalex.org/W2739538353, https://openalex.org/W54637518, https://openalex.org/W2808713351, https://openalex.org/W2370114625, https://openalex.org/W2940248110, https://openalex.org/W1756374135, https://openalex.org/W2062873522, https://openalex.org/W2947584067, https://openalex.org/W1966572348 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jenvman.2025.126025 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S44455300 |
| best_oa_location.source.issn | 0301-4797, 1095-8630 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0301-4797 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Environmental Management |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Environmental Management |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jenvman.2025.126025 |
| primary_location.id | doi:10.1016/j.jenvman.2025.126025 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S44455300 |
| primary_location.source.issn | 0301-4797, 1095-8630 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0301-4797 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Environmental Management |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Environmental Management |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jenvman.2025.126025 |
| publication_date | 2025-05-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4244985180, https://openalex.org/W4390741805, https://openalex.org/W2076132436, https://openalex.org/W1983724666, https://openalex.org/W3205285071, https://openalex.org/W4223413439, https://openalex.org/W2987201163, https://openalex.org/W2216946510, https://openalex.org/W6910681941, https://openalex.org/W1993917942, https://openalex.org/W2966073096, https://openalex.org/W4388660896, https://openalex.org/W3127254741, https://openalex.org/W2168945835, https://openalex.org/W2193503481, https://openalex.org/W2443985281, https://openalex.org/W2998768810, https://openalex.org/W4388653995, https://openalex.org/W4318499730, https://openalex.org/W3193123863, https://openalex.org/W2900373313, https://openalex.org/W2166535858, https://openalex.org/W2090137585, https://openalex.org/W2852377320, https://openalex.org/W3094948551, https://openalex.org/W75231382, https://openalex.org/W2890076152, https://openalex.org/W6745609711, https://openalex.org/W4322721694, https://openalex.org/W3215097752, https://openalex.org/W1992888917, https://openalex.org/W4387221150, https://openalex.org/W2013285926, https://openalex.org/W2611387561, https://openalex.org/W2016023958, https://openalex.org/W4385762696, https://openalex.org/W4210594561, https://openalex.org/W4362521255, https://openalex.org/W4220745068, https://openalex.org/W3010294800, https://openalex.org/W6766724190, https://openalex.org/W3091861829, https://openalex.org/W4283809823, https://openalex.org/W6806856813, https://openalex.org/W4391378706, https://openalex.org/W2991435166, https://openalex.org/W1973082817, https://openalex.org/W3127717304, https://openalex.org/W4391740778, https://openalex.org/W2328399833, https://openalex.org/W3048224785, https://openalex.org/W2023796502, https://openalex.org/W2050154560, https://openalex.org/W6750729320, https://openalex.org/W4236137412, https://openalex.org/W2285552885, https://openalex.org/W6731321300, https://openalex.org/W3034404898, https://openalex.org/W2410390527, https://openalex.org/W2804894055, https://openalex.org/W4318617096, https://openalex.org/W2765335521, https://openalex.org/W3214138232, https://openalex.org/W2056701127, https://openalex.org/W2155347783, https://openalex.org/W2017559255, https://openalex.org/W4387958436, https://openalex.org/W2585392573, https://openalex.org/W6838828459, https://openalex.org/W2092128325, https://openalex.org/W7056635181, https://openalex.org/W4212921568, https://openalex.org/W6796845636, https://openalex.org/W4360981614, https://openalex.org/W2998500935, https://openalex.org/W6853428123, https://openalex.org/W3151640016, https://openalex.org/W2800299140, https://openalex.org/W2295598076, https://openalex.org/W4376870679, https://openalex.org/W2966010793, https://openalex.org/W2781302587, https://openalex.org/W4298304654, https://openalex.org/W3081125651, https://openalex.org/W4282567555, https://openalex.org/W3172873091, https://openalex.org/W2898227265, https://openalex.org/W4392550838, https://openalex.org/W2964022491 |
| referenced_works_count | 89 |
| abstract_inverted_index.= | 125, 129, 134, 141, 145, 150 |
| abstract_inverted_index.a | 1, 116, 159, 226 |
| abstract_inverted_index.%) | 136, 152, 193, 209 |
| abstract_inverted_index.%, | 127, 131, 143, 147 |
| abstract_inverted_index.91 | 130 |
| abstract_inverted_index.93 | 126, 146 |
| abstract_inverted_index.94 | 142 |
| abstract_inverted_index.In | 0, 42 |
| abstract_inverted_index.ML | 74 |
| abstract_inverted_index.at | 195, 210 |
| abstract_inverted_index.by | 293 |
| abstract_inverted_index.of | 260, 279 |
| abstract_inverted_index.on | 50, 62, 167 |
| abstract_inverted_index.to | 25, 78, 171, 186, 199, 229, 243, 285, 298 |
| abstract_inverted_index.we | 45, 157 |
| abstract_inverted_index.HVI | 182, 217 |
| abstract_inverted_index.NSE | 128, 144 |
| abstract_inverted_index.Six | 73 |
| abstract_inverted_index.The | 98, 110, 181, 216 |
| abstract_inverted_index.and | 14, 36, 58, 87, 121, 132, 139, 148, 178, 202, 235, 252, 271, 283, 289, 302 |
| abstract_inverted_index.are | 241 |
| abstract_inverted_index.for | 93, 137, 153, 268 |
| abstract_inverted_index.low | 185 |
| abstract_inverted_index.the | 258, 277 |
| abstract_inverted_index.(ML) | 57 |
| abstract_inverted_index.HVIs | 246 |
| abstract_inverted_index.SWAT | 59, 112 |
| abstract_inverted_index.This | 255 |
| abstract_inverted_index.best | 92 |
| abstract_inverted_index.both | 287 |
| abstract_inverted_index.from | 32, 184 |
| abstract_inverted_index.good | 117 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.were | 76 |
| abstract_inverted_index.with | 107, 188, 222, 265 |
| abstract_inverted_index.(ERT) | 86 |
| abstract_inverted_index.(HVI) | 164 |
| abstract_inverted_index.-1.08 | 135 |
| abstract_inverted_index.-2.32 | 151 |
| abstract_inverted_index.CMIP6 | 63 |
| abstract_inverted_index.Index | 163 |
| abstract_inverted_index.Model | 66 |
| abstract_inverted_index.PBIAS | 133, 149 |
| abstract_inverted_index.These | 274 |
| abstract_inverted_index.Trees | 85 |
| abstract_inverted_index.based | 61, 166 |
| abstract_inverted_index.input | 105 |
| abstract_inverted_index.lower | 190 |
| abstract_inverted_index.model | 60, 102, 113 |
| abstract_inverted_index.novel | 160 |
| abstract_inverted_index.risks | 31 |
| abstract_inverted_index.study | 256 |
| abstract_inverted_index.under | 68 |
| abstract_inverted_index.using | 54 |
| abstract_inverted_index.water | 9, 19, 39, 51, 168, 231, 250, 301 |
| abstract_inverted_index.(43.45 | 208 |
| abstract_inverted_index.(54.03 | 192 |
| abstract_inverted_index.(GCMs) | 67 |
| abstract_inverted_index.(SSP). | 72 |
| abstract_inverted_index.Global | 64 |
| abstract_inverted_index.Hence, | 238 |
| abstract_inverted_index.Shared | 69 |
| abstract_inverted_index.across | 176 |
| abstract_inverted_index.better | 26 |
| abstract_inverted_index.change | 7, 48 |
| abstract_inverted_index.cycles | 13 |
| abstract_inverted_index.ensure | 299 |
| abstract_inverted_index.future | 179 |
| abstract_inverted_index.higher | 203 |
| abstract_inverted_index.models | 75 |
| abstract_inverted_index.ranged | 183 |
| abstract_inverted_index.severe | 206 |
| abstract_inverted_index.short- | 288 |
| abstract_inverted_index.showed | 115 |
| abstract_inverted_index.study, | 44 |
| abstract_inverted_index.values | 123, 191, 204 |
| abstract_inverted_index.world, | 4 |
| abstract_inverted_index.Climate | 65 |
| abstract_inverted_index.Pathway | 71 |
| abstract_inverted_index.SSP245, | 211 |
| abstract_inverted_index.address | 244, 286 |
| abstract_inverted_index.against | 249 |
| abstract_inverted_index.balance | 169 |
| abstract_inverted_index.between | 119 |
| abstract_inverted_index.climate | 6, 47, 96, 220, 266 |
| abstract_inverted_index.complex | 28 |
| abstract_inverted_index.develop | 37 |
| abstract_inverted_index.drought | 214 |
| abstract_inverted_index.events; | 82 |
| abstract_inverted_index.extreme | 213, 245 |
| abstract_inverted_index.impacts | 49 |
| abstract_inverted_index.machine | 55 |
| abstract_inverted_index.maximum | 189 |
| abstract_inverted_index.modeled | 46 |
| abstract_inverted_index.predict | 80 |
| abstract_inverted_index.rapidly | 2 |
| abstract_inverted_index.results | 275 |
| abstract_inverted_index.stress, | 201 |
| abstract_inverted_index.various | 281 |
| abstract_inverted_index.weather | 34 |
| abstract_inverted_index.worsens | 8 |
| abstract_inverted_index.Boosting | 89 |
| abstract_inverted_index.adaptive | 38, 233, 295 |
| abstract_inverted_index.analysis | 264 |
| abstract_inverted_index.approach | 228 |
| abstract_inverted_index.baseline | 177 |
| abstract_inverted_index.changing | 3, 33 |
| abstract_inverted_index.climatic | 291 |
| abstract_inverted_index.coupling | 261 |
| abstract_inverted_index.critical | 242 |
| abstract_inverted_index.dynamics | 175 |
| abstract_inverted_index.ensemble | 95, 111 |
| abstract_inverted_index.ensuring | 247 |
| abstract_inverted_index.extreme, | 187 |
| abstract_inverted_index.holistic | 23 |
| abstract_inverted_index.learning | 56 |
| abstract_inverted_index.mitigate | 30 |
| abstract_inverted_index.observed | 122, 194 |
| abstract_inverted_index.offering | 225 |
| abstract_inverted_index.periods. | 155 |
| abstract_inverted_index.policies | 240 |
| abstract_inverted_index.quantify | 172 |
| abstract_inverted_index.reducing | 104 |
| abstract_inverted_index.reliably | 79 |
| abstract_inverted_index.requires | 22 |
| abstract_inverted_index.resource | 52 |
| abstract_inverted_index.scarcity | 10, 251 |
| abstract_inverted_index.systems, | 29 |
| abstract_inverted_index.targeted | 236 |
| abstract_inverted_index.Extremely | 83 |
| abstract_inverted_index.agreement | 118 |
| abstract_inverted_index.baseline, | 196 |
| abstract_inverted_index.confirmed | 101 |
| abstract_inverted_index.datasets. | 109 |
| abstract_inverted_index.developed | 158 |
| abstract_inverted_index.ecosystem | 253, 303 |
| abstract_inverted_index.effective | 269 |
| abstract_inverted_index.employing | 294 |
| abstract_inverted_index.evaluated | 77 |
| abstract_inverted_index.framework | 165, 218 |
| abstract_inverted_index.hindering | 15 |
| abstract_inverted_index.insights, | 224 |
| abstract_inverted_index.long-term | 290 |
| abstract_inverted_index.patterns, | 35 |
| abstract_inverted_index.performed | 91 |
| abstract_inverted_index.practices | 297 |
| abstract_inverted_index.problems, | 292 |
| abstract_inverted_index.resources | 20 |
| abstract_inverted_index.simulated | 120 |
| abstract_inverted_index.watershed | 173, 270 |
| abstract_inverted_index.(CatBoost) | 90 |
| abstract_inverted_index.Addressing | 18 |
| abstract_inverted_index.Hydrologic | 161 |
| abstract_inverted_index.Randomised | 84 |
| abstract_inverted_index.actionable | 223 |
| abstract_inverted_index.approaches | 24 |
| abstract_inverted_index.components | 170 |
| abstract_inverted_index.disrupting | 11 |
| abstract_inverted_index.importance | 259, 278 |
| abstract_inverted_index.indicating | 197, 205, 212 |
| abstract_inverted_index.indicators | 100 |
| abstract_inverted_index.innovative | 239 |
| abstract_inverted_index.integrates | 219 |
| abstract_inverted_index.management | 40, 296 |
| abstract_inverted_index.resilience | 198, 248 |
| abstract_inverted_index.scenarios. | 180 |
| abstract_inverted_index.simulating | 94 |
| abstract_inverted_index.simulation | 114 |
| abstract_inverted_index.strategies | 284 |
| abstract_inverted_index.sufficient | 300 |
| abstract_inverted_index.understand | 27 |
| abstract_inverted_index.validation | 154 |
| abstract_inverted_index.Categorical | 88 |
| abstract_inverted_index.calibration | 138 |
| abstract_inverted_index.conditions. | 215 |
| abstract_inverted_index.data-driven | 262 |
| abstract_inverted_index.demonstrate | 276 |
| abstract_inverted_index.integrating | 280 |
| abstract_inverted_index.management, | 232 |
| abstract_inverted_index.projections | 221 |
| abstract_inverted_index.reliability | 103 |
| abstract_inverted_index.resilience. | 304 |
| abstract_inverted_index.statistical | 99 |
| abstract_inverted_index.strategies. | 41 |
| abstract_inverted_index.sustainable | 16, 230 |
| abstract_inverted_index.underscores | 257 |
| abstract_inverted_index.Furthermore, | 156 |
| abstract_inverted_index.degradation. | 254 |
| abstract_inverted_index.development. | 17 |
| abstract_inverted_index.hydrological | 12, 200, 263 |
| abstract_inverted_index.perspectives | 282 |
| abstract_inverted_index.uncontrolled | 5 |
| abstract_inverted_index.Socioeconomic | 70 |
| abstract_inverted_index.Vulnerability | 162 |
| abstract_inverted_index.comprehensive | 227 |
| abstract_inverted_index.environmental | 272 |
| abstract_inverted_index.hydroclimatic | 81 |
| abstract_inverted_index.interactions. | 97 |
| abstract_inverted_index.uncertainties | 106 |
| abstract_inverted_index.vulnerability | 21, 53, 174, 207 |
| abstract_inverted_index.(R<sup>2</sup> | 124, 140 |
| abstract_inverted_index.bias-corrected | 108 |
| abstract_inverted_index.interventions. | 237 |
| abstract_inverted_index.responsiveness | 267 |
| abstract_inverted_index.infrastructure, | 234 |
| abstract_inverted_index.sustainability. | 273 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Climate action |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[1].score | 0.44999998807907104 |
| sustainable_development_goals[1].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.89324862 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |