Modeling Blazar Broadband Emission with Convolutional Neural Networks. II. External Compton Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3847/1538-4357/ad5351
· OA: W4401372422
In the context of modeling spectral energy distributions (SEDs) for blazars, we extend the method that uses a convolutional neural network (CNN) to include external inverse Compton processes. The model assumes that relativistic electrons within the emitting region can interact with and up-scatter external photons originating from the accretion disk, the broad-line region, and the torus, to produce the observed high-energy emission. We trained the CNN on a numerical model that accounts for the injection of electrons, their self-consistent cooling, and pair creation-annihilation processes, considering both internal and all external photon fields. Despite the larger number of parameters compared to the synchrotron self-Compton model and the greater diversity in spectral shapes, the CNN enables an accurate computation of the SED for a specified set of parameters. The performance of the CNN is demonstrated by fitting the SED of two flat-spectrum radio quasars, namely 3C 454.3 and CTA 102, and obtaining their parameter posterior distributions. For the first source, the available data in the low-energy band allowed us to constrain the minimum Lorentz factor of the electrons, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>min</mml:mi> </mml:mrow> </mml:msub> </mml:math> , while for the second source, due to the lack of these data, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>min</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> was set. We used the obtained parameters to investigate the energetics of the system. The model developed here, along with one from Bégué et al., enables self-consistent, in-depth modeling of blazar broadband emissions within a leptonic scenario.