Modeling Chronic Obstructive Pulmonary Disease Progression Using Continuous-Time Hidden Markov Models Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.3233/shti190358
Understanding the progression of chronic diseases, such as chronic obstructive pulmonary disease (COPD), is important to inform early diagnosis, personalized care, and health system management. Data from clinical and administrative systems have the potential to advance this understanding, but traditional methods for modelling disease progression are not well-suited to analyzing data collected at irregular intervals, such as when a patient interacts with a healthcare system. We applied a continuous-time hidden Markov model to irregularly-spaced healthcare utilization events and patient-level characteristics in order to analyze the progression through discrete states of 76,888 patients with COPD. A 4-state model allowed classification of patients into interpretable states of disease progression and generated insights about the role of comorbidities, such as cardiovascular diseases, in accelerating severe trajectories. These results can improve the understanding of the evolution of COPD and point to new hypotheses about chronic disease management and comorbidity.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3233/shti190358
- OA Status
- hybrid
- Cited By
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2979918689
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2979918689Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/shti190358Digital Object Identifier
- Title
-
Modeling Chronic Obstructive Pulmonary Disease Progression Using Continuous-Time Hidden Markov ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Guido Powell, Aman Verma, Yu Luo, David A. Stephens, David L. BuckeridgeList of authors in order
- Landing page
-
https://doi.org/10.3233/shti190358Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3233/shti190358Direct OA link when available
- Concepts
-
COPD, Comorbidity, Pulmonary disease, Medicine, Disease, Intensive care medicine, Hidden Markov model, Health care, Markov model, Chronic disease, Disease management, Computer science, Markov chain, Artificial intelligence, Machine learning, Internal medicine, Economic growth, Parkinson's disease, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2022: 3, 2021: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2979918689 |
|---|---|
| doi | https://doi.org/10.3233/shti190358 |
| ids.doi | https://doi.org/10.3233/shti190358 |
| ids.mag | 2979918689 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31438058 |
| ids.openalex | https://openalex.org/W2979918689 |
| fwci | 4.9489548 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D002318 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Cardiovascular Diseases |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D002908 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Chronic Disease |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D015897 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Comorbidity |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D018450 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Disease Progression |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D029424 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Pulmonary Disease, Chronic Obstructive |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D002318 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Cardiovascular Diseases |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D002908 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Chronic Disease |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D015897 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Comorbidity |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D018450 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Disease Progression |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D029424 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Pulmonary Disease, Chronic Obstructive |
| type | article |
| title | Modeling Chronic Obstructive Pulmonary Disease Progression Using Continuous-Time Hidden Markov Models |
| biblio.issue | |
| biblio.volume | 264 |
| biblio.last_page | 924 |
| biblio.first_page | 920 |
| topics[0].id | https://openalex.org/T12246 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9789999723434448 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Chronic Disease Management Strategies |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9490000009536743 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776780178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.788814902305603 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199804 |
| concepts[0].display_name | COPD |
| concepts[1].id | https://openalex.org/C2779159551 |
| concepts[1].level | 2 |
| concepts[1].score | 0.77415531873703 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1414874 |
| concepts[1].display_name | Comorbidity |
| concepts[2].id | https://openalex.org/C2992779976 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6938608288764954 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3286546 |
| concepts[2].display_name | Pulmonary disease |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6170340776443481 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C2779134260 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6130080819129944 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[4].display_name | Disease |
| concepts[5].id | https://openalex.org/C177713679 |
| concepts[5].level | 1 |
| concepts[5].score | 0.580802321434021 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[5].display_name | Intensive care medicine |
| concepts[6].id | https://openalex.org/C23224414 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48704007267951965 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q176769 |
| concepts[6].display_name | Hidden Markov model |
| concepts[7].id | https://openalex.org/C160735492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45251184701919556 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[7].display_name | Health care |
| concepts[8].id | https://openalex.org/C163836022 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4243232309818268 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6771326 |
| concepts[8].display_name | Markov model |
| concepts[9].id | https://openalex.org/C2987552334 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4175381660461426 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q383126 |
| concepts[9].display_name | Chronic disease |
| concepts[10].id | https://openalex.org/C2982889124 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4104262590408325 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q107439039 |
| concepts[10].display_name | Disease management |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.40176641941070557 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C98763669 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2899990677833557 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[12].display_name | Markov chain |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.26838624477386475 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2550605535507202 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C126322002 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17612653970718384 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[15].display_name | Internal medicine |
| concepts[16].id | https://openalex.org/C50522688 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[16].display_name | Economic growth |
| concepts[17].id | https://openalex.org/C2779734285 |
| concepts[17].level | 3 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11085 |
| concepts[17].display_name | Parkinson's disease |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/copd |
| keywords[0].score | 0.788814902305603 |
| keywords[0].display_name | COPD |
| keywords[1].id | https://openalex.org/keywords/comorbidity |
| keywords[1].score | 0.77415531873703 |
| keywords[1].display_name | Comorbidity |
| keywords[2].id | https://openalex.org/keywords/pulmonary-disease |
| keywords[2].score | 0.6938608288764954 |
| keywords[2].display_name | Pulmonary disease |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.6170340776443481 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/disease |
| keywords[4].score | 0.6130080819129944 |
| keywords[4].display_name | Disease |
| keywords[5].id | https://openalex.org/keywords/intensive-care-medicine |
| keywords[5].score | 0.580802321434021 |
| keywords[5].display_name | Intensive care medicine |
| keywords[6].id | https://openalex.org/keywords/hidden-markov-model |
| keywords[6].score | 0.48704007267951965 |
| keywords[6].display_name | Hidden Markov model |
| keywords[7].id | https://openalex.org/keywords/health-care |
| keywords[7].score | 0.45251184701919556 |
| keywords[7].display_name | Health care |
| keywords[8].id | https://openalex.org/keywords/markov-model |
| keywords[8].score | 0.4243232309818268 |
| keywords[8].display_name | Markov model |
| keywords[9].id | https://openalex.org/keywords/chronic-disease |
| keywords[9].score | 0.4175381660461426 |
| keywords[9].display_name | Chronic disease |
| keywords[10].id | https://openalex.org/keywords/disease-management |
| keywords[10].score | 0.4104262590408325 |
| keywords[10].display_name | Disease management |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.40176641941070557 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/markov-chain |
| keywords[12].score | 0.2899990677833557 |
| keywords[12].display_name | Markov chain |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.26838624477386475 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.2550605535507202 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/internal-medicine |
| keywords[15].score | 0.17612653970718384 |
| keywords[15].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.3233/shti190358 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179765 |
| locations[0].source.issn | 0926-9630, 1879-8365 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0926-9630 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Studies in health technology and informatics |
| locations[0].source.host_organization | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_name | IOS Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_lineage_names | IOS Press |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Studies in Health Technology and Informatics |
| locations[0].landing_page_url | https://doi.org/10.3233/shti190358 |
| locations[1].id | pmid:31438058 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Studies in health technology and informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31438058 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5042533270 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Guido Powell |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada. |
| authorships[0].institutions[0].id | https://openalex.org/I5023651 |
| authorships[0].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | McGill University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guido Antonio Powell |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada. |
| authorships[1].author.id | https://openalex.org/A5049629789 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7436-1325 |
| authorships[1].author.display_name | Aman Verma |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada. |
| authorships[1].institutions[0].id | https://openalex.org/I5023651 |
| authorships[1].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | McGill University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aman Verma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada. |
| authorships[2].author.id | https://openalex.org/A5056800583 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0434-2916 |
| authorships[2].author.display_name | Yu Luo |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada. |
| authorships[2].institutions[0].id | https://openalex.org/I5023651 |
| authorships[2].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | McGill University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu Luo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada. |
| authorships[3].author.id | https://openalex.org/A5085069223 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9811-7140 |
| authorships[3].author.display_name | David A. Stephens |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada. |
| authorships[3].institutions[0].id | https://openalex.org/I5023651 |
| authorships[3].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | McGill University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David Stephens |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada. |
| authorships[4].author.id | https://openalex.org/A5027694435 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1817-5047 |
| authorships[4].author.display_name | David L. Buckeridge |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada. |
| authorships[4].institutions[0].id | https://openalex.org/I5023651 |
| authorships[4].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | McGill University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | David Buckeridge |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3233/shti190358 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modeling Chronic Obstructive Pulmonary Disease Progression Using Continuous-Time Hidden Markov Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12246 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9789999723434448 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Chronic Disease Management Strategies |
| related_works | https://openalex.org/W1510894296, https://openalex.org/W2134386692, https://openalex.org/W2194396582, https://openalex.org/W2082284720, https://openalex.org/W2116722627, https://openalex.org/W2537260108, https://openalex.org/W2158700654, https://openalex.org/W2379938888, https://openalex.org/W2566202039, https://openalex.org/W4233405330 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3233/shti190358 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179765 |
| best_oa_location.source.issn | 0926-9630, 1879-8365 |
| best_oa_location.source.type | book series |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0926-9630 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Studies in health technology and informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_name | IOS Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_lineage_names | IOS Press |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Studies in Health Technology and Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.3233/shti190358 |
| primary_location.id | doi:10.3233/shti190358 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179765 |
| primary_location.source.issn | 0926-9630, 1879-8365 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0926-9630 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Studies in health technology and informatics |
| primary_location.source.host_organization | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_name | IOS Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_lineage_names | IOS Press |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Studies in Health Technology and Informatics |
| primary_location.landing_page_url | https://doi.org/10.3233/shti190358 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 94 |
| abstract_inverted_index.a | 58, 62, 67 |
| abstract_inverted_index.We | 65 |
| abstract_inverted_index.as | 7, 56, 116 |
| abstract_inverted_index.at | 52 |
| abstract_inverted_index.in | 80, 119 |
| abstract_inverted_index.is | 13 |
| abstract_inverted_index.of | 3, 89, 99, 104, 113, 129, 132 |
| abstract_inverted_index.to | 15, 34, 48, 72, 82, 136 |
| abstract_inverted_index.and | 21, 28, 77, 107, 134, 143 |
| abstract_inverted_index.are | 45 |
| abstract_inverted_index.but | 38 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.for | 41 |
| abstract_inverted_index.new | 137 |
| abstract_inverted_index.not | 46 |
| abstract_inverted_index.the | 1, 32, 84, 111, 127, 130 |
| abstract_inverted_index.COPD | 133 |
| abstract_inverted_index.Data | 25 |
| abstract_inverted_index.data | 50 |
| abstract_inverted_index.from | 26 |
| abstract_inverted_index.have | 31 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.role | 112 |
| abstract_inverted_index.such | 6, 55, 115 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.when | 57 |
| abstract_inverted_index.with | 61, 92 |
| abstract_inverted_index.COPD. | 93 |
| abstract_inverted_index.These | 123 |
| abstract_inverted_index.about | 110, 139 |
| abstract_inverted_index.care, | 20 |
| abstract_inverted_index.early | 17 |
| abstract_inverted_index.model | 71, 96 |
| abstract_inverted_index.order | 81 |
| abstract_inverted_index.point | 135 |
| abstract_inverted_index.76,888 | 90 |
| abstract_inverted_index.Markov | 70 |
| abstract_inverted_index.events | 76 |
| abstract_inverted_index.health | 22 |
| abstract_inverted_index.hidden | 69 |
| abstract_inverted_index.inform | 16 |
| abstract_inverted_index.severe | 121 |
| abstract_inverted_index.states | 88, 103 |
| abstract_inverted_index.system | 23 |
| abstract_inverted_index.(COPD), | 12 |
| abstract_inverted_index.4-state | 95 |
| abstract_inverted_index.advance | 35 |
| abstract_inverted_index.allowed | 97 |
| abstract_inverted_index.analyze | 83 |
| abstract_inverted_index.applied | 66 |
| abstract_inverted_index.chronic | 4, 8, 140 |
| abstract_inverted_index.disease | 11, 43, 105, 141 |
| abstract_inverted_index.improve | 126 |
| abstract_inverted_index.methods | 40 |
| abstract_inverted_index.patient | 59 |
| abstract_inverted_index.results | 124 |
| abstract_inverted_index.system. | 64 |
| abstract_inverted_index.systems | 30 |
| abstract_inverted_index.through | 86 |
| abstract_inverted_index.clinical | 27 |
| abstract_inverted_index.discrete | 87 |
| abstract_inverted_index.insights | 109 |
| abstract_inverted_index.patients | 91, 100 |
| abstract_inverted_index.analyzing | 49 |
| abstract_inverted_index.collected | 51 |
| abstract_inverted_index.diseases, | 5, 118 |
| abstract_inverted_index.evolution | 131 |
| abstract_inverted_index.generated | 108 |
| abstract_inverted_index.important | 14 |
| abstract_inverted_index.interacts | 60 |
| abstract_inverted_index.irregular | 53 |
| abstract_inverted_index.modelling | 42 |
| abstract_inverted_index.potential | 33 |
| abstract_inverted_index.pulmonary | 10 |
| abstract_inverted_index.diagnosis, | 18 |
| abstract_inverted_index.healthcare | 63, 74 |
| abstract_inverted_index.hypotheses | 138 |
| abstract_inverted_index.intervals, | 54 |
| abstract_inverted_index.management | 142 |
| abstract_inverted_index.management. | 24 |
| abstract_inverted_index.obstructive | 9 |
| abstract_inverted_index.progression | 2, 44, 85, 106 |
| abstract_inverted_index.traditional | 39 |
| abstract_inverted_index.utilization | 75 |
| abstract_inverted_index.well-suited | 47 |
| abstract_inverted_index.accelerating | 120 |
| abstract_inverted_index.comorbidity. | 144 |
| abstract_inverted_index.personalized | 19 |
| abstract_inverted_index.Understanding | 0 |
| abstract_inverted_index.interpretable | 102 |
| abstract_inverted_index.patient-level | 78 |
| abstract_inverted_index.trajectories. | 122 |
| abstract_inverted_index.understanding | 128 |
| abstract_inverted_index.administrative | 29 |
| abstract_inverted_index.cardiovascular | 117 |
| abstract_inverted_index.classification | 98 |
| abstract_inverted_index.comorbidities, | 114 |
| abstract_inverted_index.understanding, | 37 |
| abstract_inverted_index.characteristics | 79 |
| abstract_inverted_index.continuous-time | 68 |
| abstract_inverted_index.irregularly-spaced | 73 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.94997716 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |