Modeling Intersection-Level Fuel Consumption for Adaptive Traffic Signals Using a Hybrid Neural Network with a Pdf-Shaped Loss Function: Validation and Deployment Article Swipe
Yiwei Wang
,
Jinghui Yuan
,
Hong Wang
,
Chieh Ross Wang
,
Arun Subramaniyan
,
Guohui Zhang
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5249990
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5249990
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5249990
- OA Status
- green
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410255934
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410255934Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5249990Digital Object Identifier
- Title
-
Modeling Intersection-Level Fuel Consumption for Adaptive Traffic Signals Using a Hybrid Neural Network with a Pdf-Shaped Loss Function: Validation and DeploymentWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yiwei Wang, Jinghui Yuan, Hong Wang, Chieh Ross Wang, Arun Subramaniyan, Guohui ZhangList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5249990Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5249990Direct OA link when available
- Concepts
-
Intersection (aeronautics), Software deployment, Artificial neural network, Computer science, Function (biology), Fuel efficiency, Real-time computing, Artificial intelligence, Transport engineering, Engineering, Automotive engineering, Operating system, Biology, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410255934 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5249990 |
| ids.doi | https://doi.org/10.2139/ssrn.5249990 |
| ids.openalex | https://openalex.org/W4410255934 |
| fwci | 0.0 |
| type | preprint |
| title | Modeling Intersection-Level Fuel Consumption for Adaptive Traffic Signals Using a Hybrid Neural Network with a Pdf-Shaped Loss Function: Validation and Deployment |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9955000281333923 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T10524 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9830999970436096 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Traffic control and management |
| topics[2].id | https://openalex.org/T12095 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9729999899864197 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Vehicle emissions and performance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C64543145 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7823292016983032 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q162942 |
| concepts[0].display_name | Intersection (aeronautics) |
| concepts[1].id | https://openalex.org/C105339364 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7312179207801819 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[1].display_name | Software deployment |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5747367143630981 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5221607685089111 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C14036430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5174737572669983 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[4].display_name | Function (biology) |
| concepts[5].id | https://openalex.org/C45882903 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45887935161590576 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5042317 |
| concepts[5].display_name | Fuel efficiency |
| concepts[6].id | https://openalex.org/C79403827 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3310732841491699 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[6].display_name | Real-time computing |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2653333842754364 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C22212356 |
| concepts[8].level | 1 |
| concepts[8].score | 0.26516687870025635 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[8].display_name | Transport engineering |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.24096205830574036 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C171146098 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22325929999351501 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[10].display_name | Automotive engineering |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C78458016 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[13].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/intersection |
| keywords[0].score | 0.7823292016983032 |
| keywords[0].display_name | Intersection (aeronautics) |
| keywords[1].id | https://openalex.org/keywords/software-deployment |
| keywords[1].score | 0.7312179207801819 |
| keywords[1].display_name | Software deployment |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5747367143630981 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5221607685089111 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/function |
| keywords[4].score | 0.5174737572669983 |
| keywords[4].display_name | Function (biology) |
| keywords[5].id | https://openalex.org/keywords/fuel-efficiency |
| keywords[5].score | 0.45887935161590576 |
| keywords[5].display_name | Fuel efficiency |
| keywords[6].id | https://openalex.org/keywords/real-time-computing |
| keywords[6].score | 0.3310732841491699 |
| keywords[6].display_name | Real-time computing |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.2653333842754364 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/transport-engineering |
| keywords[8].score | 0.26516687870025635 |
| keywords[8].display_name | Transport engineering |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.24096205830574036 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/automotive-engineering |
| keywords[10].score | 0.22325929999351501 |
| keywords[10].display_name | Automotive engineering |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5249990 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5249990 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100397317 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5516-2897 |
| authorships[0].author.display_name | Yiwei Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yiwei Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080479612 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0895-1997 |
| authorships[1].author.display_name | Jinghui Yuan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinghui Yuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100369619 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9876-0176 |
| authorships[2].author.display_name | Hong Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hong Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044335403 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chieh Ross Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chieh Ross Wang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5051897310 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6119-3182 |
| authorships[4].author.display_name | Arun Subramaniyan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Arun Subramaniyan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5055081255 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5194-9222 |
| authorships[5].author.display_name | Guohui Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Guohui Zhang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5249990 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modeling Intersection-Level Fuel Consumption for Adaptive Traffic Signals Using a Hybrid Neural Network with a Pdf-Shaped Loss Function: Validation and Deployment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9955000281333923 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2770234245, https://openalex.org/W96612179, https://openalex.org/W4229499248, https://openalex.org/W2566006169, https://openalex.org/W1567818861, https://openalex.org/W2987774938, https://openalex.org/W4256492088, https://openalex.org/W632915154, https://openalex.org/W2055733372, https://openalex.org/W3022067003 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5249990 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5249990 |
| primary_location.id | doi:10.2139/ssrn.5249990 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5249990 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4211083365, https://openalex.org/W3083982895, https://openalex.org/W3205531670, https://openalex.org/W2066280774, https://openalex.org/W1986928131, https://openalex.org/W1822270526, https://openalex.org/W2079195614, https://openalex.org/W2058738263, https://openalex.org/W2079645323, https://openalex.org/W2097948043, https://openalex.org/W2123202088, https://openalex.org/W1631643809, https://openalex.org/W2905045239, https://openalex.org/W3010700636, https://openalex.org/W4312156708, https://openalex.org/W4390887442, https://openalex.org/W3125675327, https://openalex.org/W2158107760, https://openalex.org/W3010118086, https://openalex.org/W3113297449, https://openalex.org/W4200427151, https://openalex.org/W3160775840, https://openalex.org/W2196178291, https://openalex.org/W3092928354, https://openalex.org/W4294310914, https://openalex.org/W2489768403, https://openalex.org/W2167533984, https://openalex.org/W3203257257, https://openalex.org/W2414315151, https://openalex.org/W2622164924, https://openalex.org/W2002102776, https://openalex.org/W2963647337, https://openalex.org/W2256719931, https://openalex.org/W2964749398, https://openalex.org/W4226020874 |
| referenced_works_count | 35 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.17964937 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |