Modeling of Core Loss Based on Machine Learning and Deep Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.05487
This article proposes a Mix Neural Network (MNN) based on CNN-FCNN for predicting magnetic loss of different materials. In traditional magnetic core loss models, empirical equations usually need to be regressed under the same external conditions. When the magnetic core material is different, it needs to be classified and discussed. If external factors increase, multiple models need to be proposed for classification and discussion, making the modeling process extremely cumbersome. And traditional empirical equations still has the problem of low accuracy, although various correction equations have been introduced later, the accuracy has always been unsatisfactory. By introducing machine learning and deep learning, it is possible to simultaneously solve prediction problems with low accuracy of empirical equations and complex conditions. Based on the MagNet database, through the training of the newly proposed MNN, it is found that a single model is sufficient to make predictions for at least four different materials under varying temperatures, frequencies, and waveforms, with accuracy far exceeding that of traditional models. At the same time, we also used three other machine learning and deep learning models (Random Forest, XGBoost, MLP-LSTM) for training, all of which had much higher accuracy than traditional models. On the basis of the predicted results, a hybrid model combining MNN and XGBoost was proposed, which predicted through weighting and found that the accuracy could continue to improve. This provides a solution for modeling magnetic core loss under different materials and operating modes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.05487
- https://arxiv.org/pdf/2502.05487
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407384919
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407384919Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.05487Digital Object Identifier
- Title
-
Modeling of Core Loss Based on Machine Learning and Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-08Full publication date if available
- Authors
-
Junqi He, Yifeng Wei, Daiguang JinList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.05487Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.05487Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.05487Direct OA link when available
- Concepts
-
Core (optical fiber), Artificial intelligence, Computer science, Deep learning, Machine learning, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407384919 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.05487 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.05487 |
| ids.openalex | https://openalex.org/W4407384919 |
| fwci | |
| type | preprint |
| title | Modeling of Core Loss Based on Machine Learning and Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14225 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.18170000612735748 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Sensor and Control Systems |
| topics[1].id | https://openalex.org/T13717 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.17560000717639923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Algorithms and Applications |
| topics[2].id | https://openalex.org/T13734 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.17520000040531158 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Computational Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2164484 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7320586442947388 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5170150 |
| concepts[0].display_name | Core (optical fiber) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5832406878471375 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5765659213066101 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5240057706832886 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4190632402896881 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C76155785 |
| concepts[5].level | 1 |
| concepts[5].score | 0.08259284496307373 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[5].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/core |
| keywords[0].score | 0.7320586442947388 |
| keywords[0].display_name | Core (optical fiber) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5832406878471375 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5765659213066101 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5240057706832886 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4190632402896881 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/telecommunications |
| keywords[5].score | 0.08259284496307373 |
| keywords[5].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.05487 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.05487 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.05487 |
| locations[1].id | doi:10.48550/arxiv.2502.05487 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.05487 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100974020 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Junqi He |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | He, Junqi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5039974162 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2007-300X |
| authorships[1].author.display_name | Yifeng Wei |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wei, Yifeng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103983151 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Daiguang Jin |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jin, Daiguang |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.05487 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modeling of Core Loss Based on Machine Learning and Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14225 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.18170000612735748 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Sensor and Control Systems |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W4387369504, https://openalex.org/W3046775127 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.05487 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.05487 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.05487 |
| primary_location.id | pmh:oai:arXiv.org:2502.05487 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.05487 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.05487 |
| publication_date | 2025-02-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 136, 202, 226 |
| abstract_inverted_index.At | 164 |
| abstract_inverted_index.By | 95 |
| abstract_inverted_index.If | 50 |
| abstract_inverted_index.In | 18 |
| abstract_inverted_index.On | 195 |
| abstract_inverted_index.at | 145 |
| abstract_inverted_index.be | 29, 46, 58 |
| abstract_inverted_index.is | 41, 103, 133, 139 |
| abstract_inverted_index.it | 43, 102, 132 |
| abstract_inverted_index.of | 15, 78, 113, 127, 161, 186, 198 |
| abstract_inverted_index.on | 9, 120 |
| abstract_inverted_index.to | 28, 45, 57, 105, 141, 222 |
| abstract_inverted_index.we | 168 |
| abstract_inverted_index.And | 70 |
| abstract_inverted_index.MNN | 206 |
| abstract_inverted_index.Mix | 4 |
| abstract_inverted_index.all | 185 |
| abstract_inverted_index.and | 48, 62, 99, 116, 154, 175, 207, 215, 236 |
| abstract_inverted_index.far | 158 |
| abstract_inverted_index.for | 11, 60, 144, 183, 228 |
| abstract_inverted_index.had | 188 |
| abstract_inverted_index.has | 75, 91 |
| abstract_inverted_index.low | 79, 111 |
| abstract_inverted_index.the | 32, 37, 65, 76, 89, 121, 125, 128, 165, 196, 199, 218 |
| abstract_inverted_index.was | 209 |
| abstract_inverted_index.MNN, | 131 |
| abstract_inverted_index.This | 0, 224 |
| abstract_inverted_index.When | 36 |
| abstract_inverted_index.also | 169 |
| abstract_inverted_index.been | 86, 93 |
| abstract_inverted_index.core | 21, 39, 231 |
| abstract_inverted_index.deep | 100, 176 |
| abstract_inverted_index.four | 147 |
| abstract_inverted_index.have | 85 |
| abstract_inverted_index.loss | 14, 22, 232 |
| abstract_inverted_index.make | 142 |
| abstract_inverted_index.much | 189 |
| abstract_inverted_index.need | 27, 56 |
| abstract_inverted_index.same | 33, 166 |
| abstract_inverted_index.than | 192 |
| abstract_inverted_index.that | 135, 160, 217 |
| abstract_inverted_index.used | 170 |
| abstract_inverted_index.with | 110, 156 |
| abstract_inverted_index.(MNN) | 7 |
| abstract_inverted_index.Based | 119 |
| abstract_inverted_index.based | 8 |
| abstract_inverted_index.basis | 197 |
| abstract_inverted_index.could | 220 |
| abstract_inverted_index.found | 134, 216 |
| abstract_inverted_index.least | 146 |
| abstract_inverted_index.model | 138, 204 |
| abstract_inverted_index.needs | 44 |
| abstract_inverted_index.newly | 129 |
| abstract_inverted_index.other | 172 |
| abstract_inverted_index.solve | 107 |
| abstract_inverted_index.still | 74 |
| abstract_inverted_index.three | 171 |
| abstract_inverted_index.time, | 167 |
| abstract_inverted_index.under | 31, 150, 233 |
| abstract_inverted_index.which | 187, 211 |
| abstract_inverted_index.MagNet | 122 |
| abstract_inverted_index.Neural | 5 |
| abstract_inverted_index.always | 92 |
| abstract_inverted_index.higher | 190 |
| abstract_inverted_index.hybrid | 203 |
| abstract_inverted_index.later, | 88 |
| abstract_inverted_index.making | 64 |
| abstract_inverted_index.models | 55, 178 |
| abstract_inverted_index.modes. | 238 |
| abstract_inverted_index.single | 137 |
| abstract_inverted_index.(Random | 179 |
| abstract_inverted_index.Forest, | 180 |
| abstract_inverted_index.Network | 6 |
| abstract_inverted_index.XGBoost | 208 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.complex | 117 |
| abstract_inverted_index.factors | 52 |
| abstract_inverted_index.machine | 97, 173 |
| abstract_inverted_index.models, | 23 |
| abstract_inverted_index.models. | 163, 194 |
| abstract_inverted_index.problem | 77 |
| abstract_inverted_index.process | 67 |
| abstract_inverted_index.through | 124, 213 |
| abstract_inverted_index.usually | 26 |
| abstract_inverted_index.various | 82 |
| abstract_inverted_index.varying | 151 |
| abstract_inverted_index.CNN-FCNN | 10 |
| abstract_inverted_index.XGBoost, | 181 |
| abstract_inverted_index.accuracy | 90, 112, 157, 191, 219 |
| abstract_inverted_index.although | 81 |
| abstract_inverted_index.continue | 221 |
| abstract_inverted_index.external | 34, 51 |
| abstract_inverted_index.improve. | 223 |
| abstract_inverted_index.learning | 98, 174, 177 |
| abstract_inverted_index.magnetic | 13, 20, 38, 230 |
| abstract_inverted_index.material | 40 |
| abstract_inverted_index.modeling | 66, 229 |
| abstract_inverted_index.multiple | 54 |
| abstract_inverted_index.possible | 104 |
| abstract_inverted_index.problems | 109 |
| abstract_inverted_index.proposed | 59, 130 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.provides | 225 |
| abstract_inverted_index.results, | 201 |
| abstract_inverted_index.solution | 227 |
| abstract_inverted_index.training | 126 |
| abstract_inverted_index.MLP-LSTM) | 182 |
| abstract_inverted_index.accuracy, | 80 |
| abstract_inverted_index.combining | 205 |
| abstract_inverted_index.database, | 123 |
| abstract_inverted_index.different | 16, 148, 234 |
| abstract_inverted_index.empirical | 24, 72, 114 |
| abstract_inverted_index.equations | 25, 73, 84, 115 |
| abstract_inverted_index.exceeding | 159 |
| abstract_inverted_index.extremely | 68 |
| abstract_inverted_index.increase, | 53 |
| abstract_inverted_index.learning, | 101 |
| abstract_inverted_index.materials | 149, 235 |
| abstract_inverted_index.operating | 237 |
| abstract_inverted_index.predicted | 200, 212 |
| abstract_inverted_index.proposed, | 210 |
| abstract_inverted_index.regressed | 30 |
| abstract_inverted_index.training, | 184 |
| abstract_inverted_index.weighting | 214 |
| abstract_inverted_index.classified | 47 |
| abstract_inverted_index.correction | 83 |
| abstract_inverted_index.different, | 42 |
| abstract_inverted_index.discussed. | 49 |
| abstract_inverted_index.introduced | 87 |
| abstract_inverted_index.materials. | 17 |
| abstract_inverted_index.predicting | 12 |
| abstract_inverted_index.prediction | 108 |
| abstract_inverted_index.sufficient | 140 |
| abstract_inverted_index.waveforms, | 155 |
| abstract_inverted_index.conditions. | 35, 118 |
| abstract_inverted_index.cumbersome. | 69 |
| abstract_inverted_index.discussion, | 63 |
| abstract_inverted_index.introducing | 96 |
| abstract_inverted_index.predictions | 143 |
| abstract_inverted_index.traditional | 19, 71, 162, 193 |
| abstract_inverted_index.frequencies, | 153 |
| abstract_inverted_index.temperatures, | 152 |
| abstract_inverted_index.classification | 61 |
| abstract_inverted_index.simultaneously | 106 |
| abstract_inverted_index.unsatisfactory. | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |