Modeling the capacity of engineered cementitious composites for self-healing using AI-based ensemble techniques Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.cscm.2022.e01805
Engineered cementitious composite (ECC) is a special material that, when continuously hydrated, can considerably aid in self-healing. It is necessary to look at the capacity of ECC for self-healing – as measured by crack-widthafter (CWA) – when process of healing has completed, gauge the severity of the cracking, and foresee the extent of the healing. However, modeling and forecasting capacity of ECC for self-healing is a challenging task. Prediction of self-healing is a notably uncommon application of machine learning (ML), which has been applied to forecast a range of concrete properties. To estimate the capacity of ECC for self-healing, this study used three different the ensemble ML algorithms namely AdaBoost regressor (AR), decision tree (DT), and bagging regressor (BR). In addition, k-fold cross-validation method is utilized to assess the model effectiveness. With an R2 value of 0.974, the BR model was more successful in predicting outcomes when compared to the DT and AR models. Improved model performance was shown for ensemble models with smaller MAE (AR = 3.40, and BR = 1.89), MSE (AR = 27.09, and BR = 10.40), and RMSE (AR = 5.21, and BR = 3.23) values and larger R2 (AR = 0.933, and BR = 0.974) values as compared to DT (MAE = 4.29, MSE = 43.28, RMSE = 6.58, R2 = 0.894). Eventually this study will lead to savings in time, effort, and money, and the use of ML approaches to predict CWA will advance the field of civil engineering. It is also advised to investigate the crack-healing properties of additional cementitious materials such rice husk ash, wheat straw ash, and pumice powder subject to modeling their crack-healing properties using ML approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.cscm.2022.e01805
- OA Status
- gold
- Cited By
- 38
- References
- 112
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312221648
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312221648Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.cscm.2022.e01805Digital Object Identifier
- Title
-
Modeling the capacity of engineered cementitious composites for self-healing using AI-based ensemble techniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-24Full publication date if available
- Authors
-
Hisham Alabduljabbar, Kaffayatullah Khan, Hamad Hassan Awan, Rayed Alyousef, Abdeliazim Mustafa Mohamed, Sayed M. EldinList of authors in order
- Landing page
-
https://doi.org/10.1016/j.cscm.2022.e01805Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.cscm.2022.e01805Direct OA link when available
- Concepts
-
Mean squared error, Self-healing, Computer science, Ensemble forecasting, Ensemble learning, Mean absolute error, Predictive modelling, Composite number, Artificial intelligence, Machine learning, Materials science, Mathematics, Statistics, Algorithm, Medicine, Alternative medicine, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
38Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 16, 2024: 11, 2023: 11Per-year citation counts (last 5 years)
- References (count)
-
112Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312221648 |
|---|---|
| doi | https://doi.org/10.1016/j.cscm.2022.e01805 |
| ids.doi | https://doi.org/10.1016/j.cscm.2022.e01805 |
| ids.openalex | https://openalex.org/W4312221648 |
| fwci | 3.73480601 |
| type | article |
| title | Modeling the capacity of engineered cementitious composites for self-healing using AI-based ensemble techniques |
| biblio.issue | |
| biblio.volume | 18 |
| biblio.last_page | e01805 |
| biblio.first_page | e01805 |
| topics[0].id | https://openalex.org/T12247 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Microbial Applications in Construction Materials |
| topics[1].id | https://openalex.org/T11850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Corrosion and Durability |
| topics[2].id | https://openalex.org/T10033 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Concrete and Cement Materials Research |
| is_xpac | False |
| apc_list.value | 600 |
| apc_list.currency | USD |
| apc_list.value_usd | 600 |
| apc_paid.value | 600 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 600 |
| concepts[0].id | https://openalex.org/C139945424 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6229278445243835 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[0].display_name | Mean squared error |
| concepts[1].id | https://openalex.org/C2778210392 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5500916838645935 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1412709 |
| concepts[1].display_name | Self-healing |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.44431471824645996 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119898033 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4437687397003174 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[3].display_name | Ensemble forecasting |
| concepts[4].id | https://openalex.org/C45942800 |
| concepts[4].level | 2 |
| concepts[4].score | 0.42804965376853943 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[4].display_name | Ensemble learning |
| concepts[5].id | https://openalex.org/C188154048 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4162638187408447 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6803609 |
| concepts[5].display_name | Mean absolute error |
| concepts[6].id | https://openalex.org/C45804977 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4109065532684326 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[6].display_name | Predictive modelling |
| concepts[7].id | https://openalex.org/C104779481 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4106314182281494 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q50707 |
| concepts[7].display_name | Composite number |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3573005199432373 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3504118323326111 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C192562407 |
| concepts[10].level | 0 |
| concepts[10].score | 0.34871986508369446 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[10].display_name | Materials science |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2916366755962372 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2697743773460388 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17926561832427979 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10789525508880615 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C204787440 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q188504 |
| concepts[15].display_name | Alternative medicine |
| concepts[16].id | https://openalex.org/C142724271 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[16].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/mean-squared-error |
| keywords[0].score | 0.6229278445243835 |
| keywords[0].display_name | Mean squared error |
| keywords[1].id | https://openalex.org/keywords/self-healing |
| keywords[1].score | 0.5500916838645935 |
| keywords[1].display_name | Self-healing |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.44431471824645996 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[3].score | 0.4437687397003174 |
| keywords[3].display_name | Ensemble forecasting |
| keywords[4].id | https://openalex.org/keywords/ensemble-learning |
| keywords[4].score | 0.42804965376853943 |
| keywords[4].display_name | Ensemble learning |
| keywords[5].id | https://openalex.org/keywords/mean-absolute-error |
| keywords[5].score | 0.4162638187408447 |
| keywords[5].display_name | Mean absolute error |
| keywords[6].id | https://openalex.org/keywords/predictive-modelling |
| keywords[6].score | 0.4109065532684326 |
| keywords[6].display_name | Predictive modelling |
| keywords[7].id | https://openalex.org/keywords/composite-number |
| keywords[7].score | 0.4106314182281494 |
| keywords[7].display_name | Composite number |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3573005199432373 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3504118323326111 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/materials-science |
| keywords[10].score | 0.34871986508369446 |
| keywords[10].display_name | Materials science |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2916366755962372 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.2697743773460388 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.17926561832427979 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.10789525508880615 |
| keywords[14].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1016/j.cscm.2022.e01805 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764881959 |
| locations[0].source.issn | 2214-5095 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2214-5095 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Case Studies in Construction Materials |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Case Studies in Construction Materials |
| locations[0].landing_page_url | https://doi.org/10.1016/j.cscm.2022.e01805 |
| locations[1].id | pmh:oai:doaj.org/article:4015c467354d478c9c4d92b4651d618a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Case Studies in Construction Materials, Vol 18, Iss , Pp e01805- (2023) |
| locations[1].landing_page_url | https://doaj.org/article/4015c467354d478c9c4d92b4651d618a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5023000265 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3105-6387 |
| authorships[0].author.display_name | Hisham Alabduljabbar |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I142608572 |
| authorships[0].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hisham Alabduljabbar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5086127179 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kaffayatullah Khan |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4626487 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), P.O. Box 380, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I4626487 |
| authorships[1].institutions[0].ror | https://ror.org/00dn43547 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4626487 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Faisal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kaffayatullah Khan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), P.O. Box 380, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5004968882 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hamad Hassan Awan |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I929597975 |
| authorships[2].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | National University of Sciences and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hamad Hassan Awan |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan |
| authorships[3].author.id | https://openalex.org/A5026368254 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3821-5491 |
| authorships[3].author.display_name | Rayed Alyousef |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I142608572 |
| authorships[3].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rayed Alyousef |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5008929310 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7141-5057 |
| authorships[4].author.display_name | Abdeliazim Mustafa Mohamed |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I142608572 |
| authorships[4].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Abdeliazim Mustafa Mohamed |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5077423502 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3151-9967 |
| authorships[5].author.display_name | Sayed M. Eldin |
| authorships[5].countries | EG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I186217134 |
| authorships[5].affiliations[0].raw_affiliation_string | Center of Research, Faculty of Engineering, Future University in Egypt New Cairo 11835, Egypt |
| authorships[5].institutions[0].id | https://openalex.org/I186217134 |
| authorships[5].institutions[0].ror | https://ror.org/03s8c2x09 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I186217134 |
| authorships[5].institutions[0].country_code | EG |
| authorships[5].institutions[0].display_name | Future University in Egypt |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sayed M. Eldin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Center of Research, Faculty of Engineering, Future University in Egypt New Cairo 11835, Egypt |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.cscm.2022.e01805 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modeling the capacity of engineered cementitious composites for self-healing using AI-based ensemble techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12247 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Microbial Applications in Construction Materials |
| related_works | https://openalex.org/W2794896638, https://openalex.org/W1807784185, https://openalex.org/W4390905871, https://openalex.org/W3202800081, https://openalex.org/W1909207154, https://openalex.org/W3124390867, https://openalex.org/W3101614107, https://openalex.org/W3204228978, https://openalex.org/W1514365828, https://openalex.org/W4390971112 |
| cited_by_count | 38 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 16 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.cscm.2022.e01805 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764881959 |
| best_oa_location.source.issn | 2214-5095 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2214-5095 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Case Studies in Construction Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Case Studies in Construction Materials |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.cscm.2022.e01805 |
| primary_location.id | doi:10.1016/j.cscm.2022.e01805 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764881959 |
| primary_location.source.issn | 2214-5095 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2214-5095 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Case Studies in Construction Materials |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Case Studies in Construction Materials |
| primary_location.landing_page_url | https://doi.org/10.1016/j.cscm.2022.e01805 |
| publication_date | 2022-12-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6839238650, https://openalex.org/W2047104059, https://openalex.org/W2791090105, https://openalex.org/W1993787355, https://openalex.org/W2956667991, https://openalex.org/W2017499602, https://openalex.org/W2979361043, https://openalex.org/W2916823777, https://openalex.org/W2895529154, https://openalex.org/W2804514877, https://openalex.org/W2586410984, https://openalex.org/W2004822112, https://openalex.org/W6680646984, https://openalex.org/W2079888235, https://openalex.org/W2147420261, https://openalex.org/W2009358449, https://openalex.org/W2048178921, https://openalex.org/W1957134150, https://openalex.org/W2088386179, https://openalex.org/W1992442928, https://openalex.org/W1971726089, https://openalex.org/W2944777689, https://openalex.org/W2123486947, https://openalex.org/W2082530645, https://openalex.org/W6639411054, https://openalex.org/W2093603648, https://openalex.org/W2972445383, https://openalex.org/W4220861019, https://openalex.org/W4303437377, https://openalex.org/W2780804720, https://openalex.org/W2936891363, https://openalex.org/W2976353133, https://openalex.org/W3153764057, https://openalex.org/W3093895805, https://openalex.org/W3130809182, https://openalex.org/W3185008998, https://openalex.org/W3159542470, https://openalex.org/W2608710759, https://openalex.org/W2973198867, https://openalex.org/W3125850143, https://openalex.org/W3094556934, https://openalex.org/W2769217008, https://openalex.org/W6784157011, https://openalex.org/W2977280727, https://openalex.org/W3037548423, https://openalex.org/W3127007309, https://openalex.org/W3101095738, https://openalex.org/W2975163794, https://openalex.org/W3107242961, https://openalex.org/W2952852102, https://openalex.org/W3081342661, https://openalex.org/W2610090978, https://openalex.org/W3015837740, https://openalex.org/W3092287678, https://openalex.org/W2791043882, https://openalex.org/W2418319674, https://openalex.org/W2925700532, https://openalex.org/W2807464630, https://openalex.org/W6741204657, https://openalex.org/W2956085207, https://openalex.org/W3126997349, https://openalex.org/W3017964923, https://openalex.org/W3204631755, https://openalex.org/W6783427748, https://openalex.org/W2551200462, https://openalex.org/W2063629125, https://openalex.org/W1983735453, https://openalex.org/W6751046022, https://openalex.org/W6807507712, https://openalex.org/W3092657053, https://openalex.org/W6784887111, https://openalex.org/W3043160233, https://openalex.org/W3008008902, https://openalex.org/W6788144041, https://openalex.org/W6760850240, https://openalex.org/W3183718677, https://openalex.org/W6787520691, https://openalex.org/W3107262792, https://openalex.org/W3036246077, https://openalex.org/W3133841051, https://openalex.org/W2946768262, https://openalex.org/W4221019965, https://openalex.org/W3182063184, https://openalex.org/W3184697131, https://openalex.org/W4226373677, https://openalex.org/W1588337522, https://openalex.org/W2794137295, https://openalex.org/W2038808304, https://openalex.org/W3027026717, https://openalex.org/W2523984406, https://openalex.org/W2171308009, https://openalex.org/W1998253841, https://openalex.org/W6780124554, https://openalex.org/W2979950223, https://openalex.org/W6737947904, https://openalex.org/W6845617884, https://openalex.org/W3175110185, https://openalex.org/W4251085280, https://openalex.org/W3116413087, https://openalex.org/W4283738042, https://openalex.org/W4210750266, https://openalex.org/W3094290992, https://openalex.org/W2962862931, https://openalex.org/W1905884266, https://openalex.org/W2736112913, https://openalex.org/W2934774021, https://openalex.org/W2798114059, https://openalex.org/W3087991416, https://openalex.org/W3038033549, https://openalex.org/W3121803357, https://openalex.org/W4307238966, https://openalex.org/W3097671866 |
| referenced_works_count | 112 |
| abstract_inverted_index.= | 166, 170, 174, 178, 183, 187, 194, 198, 206, 209, 212, 215 |
| abstract_inverted_index.a | 5, 65, 72, 86 |
| abstract_inverted_index.AR | 152 |
| abstract_inverted_index.BR | 138, 169, 177, 186, 197 |
| abstract_inverted_index.DT | 150, 204 |
| abstract_inverted_index.In | 119 |
| abstract_inverted_index.It | 17, 245 |
| abstract_inverted_index.ML | 106, 233, 275 |
| abstract_inverted_index.R2 | 133, 192, 214 |
| abstract_inverted_index.To | 91 |
| abstract_inverted_index.an | 132 |
| abstract_inverted_index.as | 30, 201 |
| abstract_inverted_index.at | 22 |
| abstract_inverted_index.by | 32 |
| abstract_inverted_index.in | 15, 143, 224 |
| abstract_inverted_index.is | 4, 18, 64, 71, 124, 246 |
| abstract_inverted_index.of | 25, 38, 45, 52, 60, 69, 76, 88, 95, 135, 232, 242, 254 |
| abstract_inverted_index.to | 20, 84, 126, 148, 203, 222, 235, 249, 269 |
| abstract_inverted_index.(AR | 165, 173, 182, 193 |
| abstract_inverted_index.CWA | 237 |
| abstract_inverted_index.ECC | 26, 61, 96 |
| abstract_inverted_index.MAE | 164 |
| abstract_inverted_index.MSE | 172, 208 |
| abstract_inverted_index.aid | 14 |
| abstract_inverted_index.and | 48, 57, 115, 151, 168, 176, 180, 185, 190, 196, 227, 229, 265 |
| abstract_inverted_index.can | 12 |
| abstract_inverted_index.for | 27, 62, 97, 159 |
| abstract_inverted_index.has | 40, 81 |
| abstract_inverted_index.the | 23, 43, 46, 50, 53, 93, 104, 128, 137, 149, 230, 240, 251 |
| abstract_inverted_index.use | 231 |
| abstract_inverted_index.was | 140, 157 |
| abstract_inverted_index.– | 29, 35 |
| abstract_inverted_index.(MAE | 205 |
| abstract_inverted_index.RMSE | 181, 211 |
| abstract_inverted_index.With | 131 |
| abstract_inverted_index.also | 247 |
| abstract_inverted_index.ash, | 261, 264 |
| abstract_inverted_index.been | 82 |
| abstract_inverted_index.husk | 260 |
| abstract_inverted_index.lead | 221 |
| abstract_inverted_index.look | 21 |
| abstract_inverted_index.more | 141 |
| abstract_inverted_index.rice | 259 |
| abstract_inverted_index.such | 258 |
| abstract_inverted_index.this | 99, 218 |
| abstract_inverted_index.tree | 113 |
| abstract_inverted_index.used | 101 |
| abstract_inverted_index.when | 9, 36, 146 |
| abstract_inverted_index.will | 220, 238 |
| abstract_inverted_index.with | 162 |
| abstract_inverted_index.(AR), | 111 |
| abstract_inverted_index.(BR). | 118 |
| abstract_inverted_index.(CWA) | 34 |
| abstract_inverted_index.(DT), | 114 |
| abstract_inverted_index.(ECC) | 3 |
| abstract_inverted_index.(ML), | 79 |
| abstract_inverted_index.3.23) | 188 |
| abstract_inverted_index.3.40, | 167 |
| abstract_inverted_index.4.29, | 207 |
| abstract_inverted_index.5.21, | 184 |
| abstract_inverted_index.6.58, | 213 |
| abstract_inverted_index.civil | 243 |
| abstract_inverted_index.field | 241 |
| abstract_inverted_index.gauge | 42 |
| abstract_inverted_index.model | 129, 139, 155 |
| abstract_inverted_index.range | 87 |
| abstract_inverted_index.shown | 158 |
| abstract_inverted_index.straw | 263 |
| abstract_inverted_index.study | 100, 219 |
| abstract_inverted_index.task. | 67 |
| abstract_inverted_index.that, | 8 |
| abstract_inverted_index.their | 271 |
| abstract_inverted_index.three | 102 |
| abstract_inverted_index.time, | 225 |
| abstract_inverted_index.using | 274 |
| abstract_inverted_index.value | 134 |
| abstract_inverted_index.wheat | 262 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.0.933, | 195 |
| abstract_inverted_index.0.974) | 199 |
| abstract_inverted_index.0.974, | 136 |
| abstract_inverted_index.1.89), | 171 |
| abstract_inverted_index.27.09, | 175 |
| abstract_inverted_index.43.28, | 210 |
| abstract_inverted_index.assess | 127 |
| abstract_inverted_index.extent | 51 |
| abstract_inverted_index.k-fold | 121 |
| abstract_inverted_index.larger | 191 |
| abstract_inverted_index.method | 123 |
| abstract_inverted_index.models | 161 |
| abstract_inverted_index.money, | 228 |
| abstract_inverted_index.namely | 108 |
| abstract_inverted_index.powder | 267 |
| abstract_inverted_index.pumice | 266 |
| abstract_inverted_index.values | 189, 200 |
| abstract_inverted_index.0.894). | 216 |
| abstract_inverted_index.10.40), | 179 |
| abstract_inverted_index.advance | 239 |
| abstract_inverted_index.advised | 248 |
| abstract_inverted_index.applied | 83 |
| abstract_inverted_index.bagging | 116 |
| abstract_inverted_index.effort, | 226 |
| abstract_inverted_index.foresee | 49 |
| abstract_inverted_index.healing | 39 |
| abstract_inverted_index.machine | 77 |
| abstract_inverted_index.models. | 153 |
| abstract_inverted_index.notably | 73 |
| abstract_inverted_index.predict | 236 |
| abstract_inverted_index.process | 37 |
| abstract_inverted_index.savings | 223 |
| abstract_inverted_index.smaller | 163 |
| abstract_inverted_index.special | 6 |
| abstract_inverted_index.subject | 268 |
| abstract_inverted_index.AdaBoost | 109 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.Improved | 154 |
| abstract_inverted_index.capacity | 24, 59, 94 |
| abstract_inverted_index.compared | 147, 202 |
| abstract_inverted_index.concrete | 89 |
| abstract_inverted_index.decision | 112 |
| abstract_inverted_index.ensemble | 105, 160 |
| abstract_inverted_index.estimate | 92 |
| abstract_inverted_index.forecast | 85 |
| abstract_inverted_index.healing. | 54 |
| abstract_inverted_index.learning | 78 |
| abstract_inverted_index.material | 7 |
| abstract_inverted_index.measured | 31 |
| abstract_inverted_index.modeling | 56, 270 |
| abstract_inverted_index.outcomes | 145 |
| abstract_inverted_index.severity | 44 |
| abstract_inverted_index.uncommon | 74 |
| abstract_inverted_index.utilized | 125 |
| abstract_inverted_index.addition, | 120 |
| abstract_inverted_index.composite | 2 |
| abstract_inverted_index.cracking, | 47 |
| abstract_inverted_index.different | 103 |
| abstract_inverted_index.hydrated, | 11 |
| abstract_inverted_index.materials | 257 |
| abstract_inverted_index.necessary | 19 |
| abstract_inverted_index.regressor | 110, 117 |
| abstract_inverted_index.Engineered | 0 |
| abstract_inverted_index.Eventually | 217 |
| abstract_inverted_index.Prediction | 68 |
| abstract_inverted_index.additional | 255 |
| abstract_inverted_index.algorithms | 107 |
| abstract_inverted_index.approaches | 234 |
| abstract_inverted_index.completed, | 41 |
| abstract_inverted_index.predicting | 144 |
| abstract_inverted_index.properties | 253, 273 |
| abstract_inverted_index.successful | 142 |
| abstract_inverted_index.application | 75 |
| abstract_inverted_index.approaches. | 276 |
| abstract_inverted_index.challenging | 66 |
| abstract_inverted_index.forecasting | 58 |
| abstract_inverted_index.investigate | 250 |
| abstract_inverted_index.performance | 156 |
| abstract_inverted_index.properties. | 90 |
| abstract_inverted_index.cementitious | 1, 256 |
| abstract_inverted_index.considerably | 13 |
| abstract_inverted_index.continuously | 10 |
| abstract_inverted_index.engineering. | 244 |
| abstract_inverted_index.self-healing | 28, 63, 70 |
| abstract_inverted_index.crack-healing | 252, 272 |
| abstract_inverted_index.self-healing, | 98 |
| abstract_inverted_index.self-healing. | 16 |
| abstract_inverted_index.effectiveness. | 130 |
| abstract_inverted_index.crack-widthafter | 33 |
| abstract_inverted_index.cross-validation | 122 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5004968882 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I929597975 |
| citation_normalized_percentile.value | 0.93250982 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |