Modeling the Distribution of Normal Data in Pre-Trained Deep Features\n for Anomaly Detection Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2005.14140
Anomaly Detection (AD) in images is a fundamental computer vision problem and\nrefers to identifying images and image substructures that deviate significantly\nfrom the norm. Popular AD algorithms commonly try to learn a model of normality\nfrom scratch using task specific datasets, but are limited to semi-supervised\napproaches employing mostly normal data due to the inaccessibility of anomalies\non a large scale combined with the ambiguous nature of anomaly appearance.\n We follow an alternative approach and demonstrate that deep feature\nrepresentations learned by discriminative models on large natural image\ndatasets are well suited to describe normality and detect even subtle anomalies\nin a transfer learning setting. Our model of normality is established by\nfitting a multivariate Gaussian (MVG) to deep feature representations of\nclassification networks trained on ImageNet using normal data only. By\nsubsequently applying the Mahalanobis distance as the anomaly score we\noutperform the current state of the art on the public MVTec AD dataset,\nachieving an AUROC value of $95.8 \\pm 1.2$ (mean $\\pm$ SEM) over all 15\nclasses. We further investigate why the learned representations are\ndiscriminative to the AD task using Principal Component Analysis. We find that\nthe principal components containing little variance in normal data are the ones\ncrucial for discriminating between normal and anomalous instances. This gives a\npossible explanation to the often sub-par performance of AD approaches trained\nfrom scratch using normal data only. By selectively fitting a MVG to these most\nrelevant components only, we are able to further reduce model complexity while\nretaining AD performance. We also investigate setting the working point by\nselecting acceptable False Positive Rate thresholds based on the MVG\nassumption.\n Code available at https://github.com/ORippler/gaussian-ad-mvtec\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2005.14140
- https://arxiv.org/pdf/2005.14140
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287774492
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287774492Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2005.14140Digital Object Identifier
- Title
-
Modeling the Distribution of Normal Data in Pre-Trained Deep Features\n for Anomaly DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-28Full publication date if available
- Authors
-
Oliver Rippel, Patrick Mertens, Dorit MerhofList of authors in order
- Landing page
-
https://arxiv.org/abs/2005.14140Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2005.14140Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.14140Direct OA link when available
- Concepts
-
Artificial intelligence, Discriminative model, Pattern recognition (psychology), Normality, Computer science, Anomaly detection, Multivariate normal distribution, Anomaly (physics), Feature (linguistics), Mahalanobis distance, Principal component analysis, Machine learning, Multivariate statistics, Mathematics, Statistics, Physics, Condensed matter physics, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287774492 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2005.14140 |
| ids.openalex | https://openalex.org/W4287774492 |
| fwci | 0.0 |
| type | preprint |
| title | Modeling the Distribution of Normal Data in Pre-Trained Deep Features\n for Anomaly Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9840999841690063 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T12391 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9695000052452087 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Artificial Immune Systems Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.721213698387146 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C97931131 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7169089317321777 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[1].display_name | Discriminative model |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6720938086509705 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C2776157432 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6482113003730774 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1375683 |
| concepts[3].display_name | Normality |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6230664849281311 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C739882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6055371165275574 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[5].display_name | Anomaly detection |
| concepts[6].id | https://openalex.org/C177384507 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5664401650428772 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1149000 |
| concepts[6].display_name | Multivariate normal distribution |
| concepts[7].id | https://openalex.org/C12997251 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5314117074012756 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[7].display_name | Anomaly (physics) |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5247616767883301 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C1921717 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5074860453605652 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1334846 |
| concepts[9].display_name | Mahalanobis distance |
| concepts[10].id | https://openalex.org/C27438332 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4159211218357086 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[10].display_name | Principal component analysis |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.30670100450515747 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C161584116 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2679894268512726 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[12].display_name | Multivariate statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.245845228433609 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.13960540294647217 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C26873012 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[16].display_name | Condensed matter physics |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.721213698387146 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/discriminative-model |
| keywords[1].score | 0.7169089317321777 |
| keywords[1].display_name | Discriminative model |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.6720938086509705 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/normality |
| keywords[3].score | 0.6482113003730774 |
| keywords[3].display_name | Normality |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6230664849281311 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/anomaly-detection |
| keywords[5].score | 0.6055371165275574 |
| keywords[5].display_name | Anomaly detection |
| keywords[6].id | https://openalex.org/keywords/multivariate-normal-distribution |
| keywords[6].score | 0.5664401650428772 |
| keywords[6].display_name | Multivariate normal distribution |
| keywords[7].id | https://openalex.org/keywords/anomaly |
| keywords[7].score | 0.5314117074012756 |
| keywords[7].display_name | Anomaly (physics) |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.5247616767883301 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/mahalanobis-distance |
| keywords[9].score | 0.5074860453605652 |
| keywords[9].display_name | Mahalanobis distance |
| keywords[10].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[10].score | 0.4159211218357086 |
| keywords[10].display_name | Principal component analysis |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.30670100450515747 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[12].score | 0.2679894268512726 |
| keywords[12].display_name | Multivariate statistics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.245845228433609 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.13960540294647217 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2005.14140 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2005.14140 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2005.14140 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5086371620 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4556-5094 |
| authorships[0].author.display_name | Oliver Rippel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rippel, Oliver |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5000070153 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5272-261X |
| authorships[1].author.display_name | Patrick Mertens |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mertens, Patrick |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064747056 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1672-2185 |
| authorships[2].author.display_name | Dorit Merhof |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Merhof, Dorit |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.14140 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modeling the Distribution of Normal Data in Pre-Trained Deep Features\n for Anomaly Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4382795578, https://openalex.org/W2355463328, https://openalex.org/W2402648945, https://openalex.org/W1431147547, https://openalex.org/W4249772640, https://openalex.org/W2019273819, https://openalex.org/W4245691902, https://openalex.org/W2474255749, https://openalex.org/W2010949096, https://openalex.org/W788350147 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.14140 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.14140 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.14140 |
| primary_location.id | pmh:oai:arXiv.org:2005.14140 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2005.14140 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2005.14140 |
| publication_date | 2020-05-28 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 30, 54, 94, 105, 215 |
| abstract_inverted_index.AD | 24, 142, 167, 204, 231 |
| abstract_inverted_index.By | 212 |
| abstract_inverted_index.We | 65, 157, 173, 233 |
| abstract_inverted_index.an | 67, 144 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.at | 252 |
| abstract_inverted_index.by | 76 |
| abstract_inverted_index.in | 3, 181 |
| abstract_inverted_index.is | 5, 102 |
| abstract_inverted_index.of | 32, 52, 62, 100, 135, 147, 203 |
| abstract_inverted_index.on | 79, 116, 138, 247 |
| abstract_inverted_index.to | 12, 28, 42, 49, 86, 109, 165, 198, 217, 225 |
| abstract_inverted_index.we | 222 |
| abstract_inverted_index.MVG | 216 |
| abstract_inverted_index.Our | 98 |
| abstract_inverted_index.all | 155 |
| abstract_inverted_index.and | 15, 70, 89, 191 |
| abstract_inverted_index.are | 40, 83, 184, 223 |
| abstract_inverted_index.art | 137 |
| abstract_inverted_index.but | 39 |
| abstract_inverted_index.due | 48 |
| abstract_inverted_index.for | 187 |
| abstract_inverted_index.the | 21, 50, 59, 124, 128, 132, 136, 139, 161, 166, 185, 199, 237, 248 |
| abstract_inverted_index.try | 27 |
| abstract_inverted_index.why | 160 |
| abstract_inverted_index.(AD) | 2 |
| abstract_inverted_index.1.2$ | 150 |
| abstract_inverted_index.Code | 250 |
| abstract_inverted_index.Rate | 244 |
| abstract_inverted_index.SEM) | 153 |
| abstract_inverted_index.This | 194 |
| abstract_inverted_index.\\pm | 149 |
| abstract_inverted_index.able | 224 |
| abstract_inverted_index.also | 234 |
| abstract_inverted_index.data | 47, 120, 183, 210 |
| abstract_inverted_index.deep | 73, 110 |
| abstract_inverted_index.even | 91 |
| abstract_inverted_index.find | 174 |
| abstract_inverted_index.over | 154 |
| abstract_inverted_index.task | 36, 168 |
| abstract_inverted_index.that | 18, 72 |
| abstract_inverted_index.well | 84 |
| abstract_inverted_index.with | 58 |
| abstract_inverted_index.$95.8 | 148 |
| abstract_inverted_index.(MVG) | 108 |
| abstract_inverted_index.(mean | 151 |
| abstract_inverted_index.AUROC | 145 |
| abstract_inverted_index.False | 242 |
| abstract_inverted_index.MVTec | 141 |
| abstract_inverted_index.based | 246 |
| abstract_inverted_index.gives | 195 |
| abstract_inverted_index.image | 16 |
| abstract_inverted_index.large | 55, 80 |
| abstract_inverted_index.learn | 29 |
| abstract_inverted_index.model | 31, 99, 228 |
| abstract_inverted_index.norm. | 22 |
| abstract_inverted_index.often | 200 |
| abstract_inverted_index.only, | 221 |
| abstract_inverted_index.only. | 121, 211 |
| abstract_inverted_index.point | 239 |
| abstract_inverted_index.scale | 56 |
| abstract_inverted_index.score | 130 |
| abstract_inverted_index.state | 134 |
| abstract_inverted_index.these | 218 |
| abstract_inverted_index.using | 35, 118, 169, 208 |
| abstract_inverted_index.value | 146 |
| abstract_inverted_index.$\\pm$ | 152 |
| abstract_inverted_index.detect | 90 |
| abstract_inverted_index.follow | 66 |
| abstract_inverted_index.images | 4, 14 |
| abstract_inverted_index.little | 179 |
| abstract_inverted_index.models | 78 |
| abstract_inverted_index.mostly | 45 |
| abstract_inverted_index.nature | 61 |
| abstract_inverted_index.normal | 46, 119, 182, 190, 209 |
| abstract_inverted_index.public | 140 |
| abstract_inverted_index.reduce | 227 |
| abstract_inverted_index.subtle | 92 |
| abstract_inverted_index.suited | 85 |
| abstract_inverted_index.vision | 9 |
| abstract_inverted_index.Anomaly | 0 |
| abstract_inverted_index.Popular | 23 |
| abstract_inverted_index.anomaly | 63, 129 |
| abstract_inverted_index.between | 189 |
| abstract_inverted_index.current | 133 |
| abstract_inverted_index.deviate | 19 |
| abstract_inverted_index.feature | 111 |
| abstract_inverted_index.fitting | 214 |
| abstract_inverted_index.further | 158, 226 |
| abstract_inverted_index.learned | 75, 162 |
| abstract_inverted_index.limited | 41 |
| abstract_inverted_index.natural | 81 |
| abstract_inverted_index.problem | 10 |
| abstract_inverted_index.scratch | 34, 207 |
| abstract_inverted_index.setting | 236 |
| abstract_inverted_index.sub-par | 201 |
| abstract_inverted_index.trained | 115 |
| abstract_inverted_index.working | 238 |
| abstract_inverted_index.Gaussian | 107 |
| abstract_inverted_index.ImageNet | 117 |
| abstract_inverted_index.Positive | 243 |
| abstract_inverted_index.applying | 123 |
| abstract_inverted_index.approach | 69 |
| abstract_inverted_index.combined | 57 |
| abstract_inverted_index.commonly | 26 |
| abstract_inverted_index.computer | 8 |
| abstract_inverted_index.describe | 87 |
| abstract_inverted_index.distance | 126 |
| abstract_inverted_index.learning | 96 |
| abstract_inverted_index.networks | 114 |
| abstract_inverted_index.setting. | 97 |
| abstract_inverted_index.specific | 37 |
| abstract_inverted_index.transfer | 95 |
| abstract_inverted_index.variance | 180 |
| abstract_inverted_index.Analysis. | 172 |
| abstract_inverted_index.Component | 171 |
| abstract_inverted_index.Detection | 1 |
| abstract_inverted_index.Principal | 170 |
| abstract_inverted_index.ambiguous | 60 |
| abstract_inverted_index.anomalous | 192 |
| abstract_inverted_index.available | 251 |
| abstract_inverted_index.datasets, | 38 |
| abstract_inverted_index.employing | 44 |
| abstract_inverted_index.normality | 88, 101 |
| abstract_inverted_index.principal | 176 |
| abstract_inverted_index.that\nthe | 175 |
| abstract_inverted_index.acceptable | 241 |
| abstract_inverted_index.algorithms | 25 |
| abstract_inverted_index.approaches | 205 |
| abstract_inverted_index.complexity | 229 |
| abstract_inverted_index.components | 177, 220 |
| abstract_inverted_index.containing | 178 |
| abstract_inverted_index.instances. | 193 |
| abstract_inverted_index.thresholds | 245 |
| abstract_inverted_index.Mahalanobis | 125 |
| abstract_inverted_index.a\npossible | 196 |
| abstract_inverted_index.alternative | 68 |
| abstract_inverted_index.and\nrefers | 11 |
| abstract_inverted_index.by\nfitting | 104 |
| abstract_inverted_index.demonstrate | 71 |
| abstract_inverted_index.established | 103 |
| abstract_inverted_index.explanation | 197 |
| abstract_inverted_index.fundamental | 7 |
| abstract_inverted_index.identifying | 13 |
| abstract_inverted_index.investigate | 159, 235 |
| abstract_inverted_index.performance | 202 |
| abstract_inverted_index.selectively | 213 |
| abstract_inverted_index.15\nclasses. | 156 |
| abstract_inverted_index.multivariate | 106 |
| abstract_inverted_index.performance. | 232 |
| abstract_inverted_index.anomalies\nin | 93 |
| abstract_inverted_index.anomalies\non | 53 |
| abstract_inverted_index.appearance.\n | 64 |
| abstract_inverted_index.by\nselecting | 240 |
| abstract_inverted_index.ones\ncrucial | 186 |
| abstract_inverted_index.substructures | 17 |
| abstract_inverted_index.trained\nfrom | 206 |
| abstract_inverted_index.discriminating | 188 |
| abstract_inverted_index.discriminative | 77 |
| abstract_inverted_index.most\nrelevant | 219 |
| abstract_inverted_index.we\noutperform | 131 |
| abstract_inverted_index.image\ndatasets | 82 |
| abstract_inverted_index.inaccessibility | 51 |
| abstract_inverted_index.normality\nfrom | 33 |
| abstract_inverted_index.representations | 112, 163 |
| abstract_inverted_index.By\nsubsequently | 122 |
| abstract_inverted_index.while\nretaining | 230 |
| abstract_inverted_index.MVG\nassumption.\n | 249 |
| abstract_inverted_index.of\nclassification | 113 |
| abstract_inverted_index.are\ndiscriminative | 164 |
| abstract_inverted_index.dataset,\nachieving | 143 |
| abstract_inverted_index.significantly\nfrom | 20 |
| abstract_inverted_index.feature\nrepresentations | 74 |
| abstract_inverted_index.semi-supervised\napproaches | 43 |
| abstract_inverted_index.https://github.com/ORippler/gaussian-ad-mvtec\n | 253 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.29600594 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |