Modeling the effects of environmental and perceptual uncertainty using deterministic reinforcement learning dynamics with partial observability Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2109.07259
Assessing the systemic effects of uncertainty that arises from agents' partial observation of the true states of the world is critical for understanding a wide range of scenarios. Yet, previous modeling work on agent learning and decision-making either lacks a systematic way to describe this source of uncertainty or puts the focus on obtaining optimal policies using complex models of the world that would impose an unrealistically high cognitive demand on real agents. In this work we aim to efficiently describe the emergent behavior of biologically plausible and parsimonious learning agents faced with partially observable worlds. Therefore we derive and present deterministic reinforcement learning dynamics where the agents observe the true state of the environment only partially. We showcase the broad applicability of our dynamics across different classes of partially observable agent-environment systems. We find that partial observability creates unintuitive benefits in a number of specific contexts, pointing the way to further research on a general understanding of such effects. For instance, partially observant agents can learn better outcomes faster, in a more stable way and even overcome social dilemmas. Furthermore, our method allows the application of dynamical systems theory to partially observable multiagent leaning. In this regard we find the emergence of catastrophic limit cycles, a critical slowing down of the learning processes between reward regimes and the separation of the learning dynamics into fast and slow directions, all caused by partial observability. Therefore, the presented dynamics have the potential to become a formal, yet practical, lightweight and robust tool for researchers in biology, social science and machine learning to systematically investigate the effects of interacting partially observant agents.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://pubmed.ncbi.nlm.nih.gov/35428165
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224100200
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224100200Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2109.07259Digital Object Identifier
- Title
-
Modeling the effects of environmental and perceptual uncertainty using deterministic reinforcement learning dynamics with partial observabilityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-15Full publication date if available
- Authors
-
Wolfram Barfuß, Richard P. MannList of authors in order
- Landing page
-
https://pubmed.ncbi.nlm.nih.gov/35428165Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2109.07259Direct OA link when available
- Concepts
-
Observability, Reinforcement learning, Computer science, Observable, Work (physics), Artificial intelligence, Mathematics, Physics, Thermodynamics, Quantum mechanics, Applied mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224100200 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2109.07259 |
| ids.doi | https://doi.org/10.48550/arxiv.2109.07259 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35428165 |
| ids.openalex | https://openalex.org/W4224100200 |
| fwci | 5.65031662 |
| type | article |
| title | Modeling the effects of environmental and perceptual uncertainty using deterministic reinforcement learning dynamics with partial observability |
| biblio.issue | 3-1 |
| biblio.volume | 105 |
| biblio.last_page | 034409 |
| biblio.first_page | 034409 |
| topics[0].id | https://openalex.org/T13497 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1211 |
| topics[0].subfield.display_name | Philosophy |
| topics[0].display_name | Hermeneutics and Narrative Identity |
| topics[1].id | https://openalex.org/T13695 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9749000072479248 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3600 |
| topics[1].subfield.display_name | General Health Professions |
| topics[1].display_name | Aging, Elder Care, and Social Issues |
| topics[2].id | https://openalex.org/T13099 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.95660001039505 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Health, Medicine and Society |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C36299963 |
| concepts[0].level | 2 |
| concepts[0].score | 0.837006151676178 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1369844 |
| concepts[0].display_name | Observability |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6715113520622253 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6693301796913147 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C32848918 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6318401098251343 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q845789 |
| concepts[3].display_name | Observable |
| concepts[4].id | https://openalex.org/C18762648 |
| concepts[4].level | 2 |
| concepts[4].score | 0.420415997505188 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[4].display_name | Work (physics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38492074608802795 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.15523183345794678 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11915844678878784 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C97355855 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[8].display_name | Thermodynamics |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| keywords[0].id | https://openalex.org/keywords/observability |
| keywords[0].score | 0.837006151676178 |
| keywords[0].display_name | Observability |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.6715113520622253 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6693301796913147 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/observable |
| keywords[3].score | 0.6318401098251343 |
| keywords[3].display_name | Observable |
| keywords[4].id | https://openalex.org/keywords/work |
| keywords[4].score | 0.420415997505188 |
| keywords[4].display_name | Work (physics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.38492074608802795 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.15523183345794678 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.11915844678878784 |
| keywords[7].display_name | Physics |
| language | en |
| locations[0].id | pmid:35428165 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306525036 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PubMed |
| locations[0].source.host_organization | https://openalex.org/I1299303238 |
| locations[0].source.host_organization_name | National Institutes of Health |
| locations[0].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Physical review. E |
| locations[0].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35428165 |
| locations[1].id | doi:10.48550/arxiv.2109.07259 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2109.07259 |
| indexed_in | datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5047941384 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9077-5242 |
| authorships[0].author.display_name | Wolfram Barfuß |
| authorships[0].countries | DE, GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I8087733 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I130828816 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. |
| authorships[0].institutions[0].id | https://openalex.org/I8087733 |
| authorships[0].institutions[0].ror | https://ror.org/03a1kwz48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I8087733 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Tübingen |
| authorships[0].institutions[1].id | https://openalex.org/I130828816 |
| authorships[0].institutions[1].ror | https://ror.org/024mrxd33 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I130828816 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University of Leeds |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wolfram Barfuss |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom., Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany. |
| authorships[1].author.id | https://openalex.org/A5014611168 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0701-1274 |
| authorships[1].author.display_name | Richard P. Mann |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130828816 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. |
| authorships[1].institutions[0].id | https://openalex.org/I130828816 |
| authorships[1].institutions[0].ror | https://ror.org/024mrxd33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130828816 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Leeds |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Richard P Mann |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2109.07259 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modeling the effects of environmental and perceptual uncertainty using deterministic reinforcement learning dynamics with partial observability |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13497 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1211 |
| primary_topic.subfield.display_name | Philosophy |
| primary_topic.display_name | Hermeneutics and Narrative Identity |
| related_works | https://openalex.org/W1353223, https://openalex.org/W929682, https://openalex.org/W868042, https://openalex.org/W4412456, https://openalex.org/W547392, https://openalex.org/W1323832, https://openalex.org/W14675489, https://openalex.org/W8447228, https://openalex.org/W17336456, https://openalex.org/W5475128 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.48550/arxiv.2109.07259 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2109.07259 |
| primary_location.id | pmid:35428165 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306525036 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PubMed |
| primary_location.source.host_organization | https://openalex.org/I1299303238 |
| primary_location.source.host_organization_name | National Institutes of Health |
| primary_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Physical review. E |
| primary_location.landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35428165 |
| publication_date | 2021-09-15 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 39, 142, 154, 171, 206, 243 |
| abstract_inverted_index.In | 73, 195 |
| abstract_inverted_index.We | 117, 133 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.by | 231 |
| abstract_inverted_index.in | 141, 170, 253 |
| abstract_inverted_index.is | 19 |
| abstract_inverted_index.of | 4, 12, 16, 26, 46, 59, 84, 112, 122, 128, 144, 157, 186, 202, 210, 220, 265 |
| abstract_inverted_index.on | 32, 52, 70, 153 |
| abstract_inverted_index.or | 48 |
| abstract_inverted_index.to | 42, 78, 150, 190, 241, 260 |
| abstract_inverted_index.we | 76, 97, 198 |
| abstract_inverted_index.For | 160 |
| abstract_inverted_index.aim | 77 |
| abstract_inverted_index.all | 229 |
| abstract_inverted_index.and | 35, 87, 99, 175, 217, 226, 248, 257 |
| abstract_inverted_index.can | 165 |
| abstract_inverted_index.for | 21, 251 |
| abstract_inverted_index.our | 123, 181 |
| abstract_inverted_index.the | 1, 13, 17, 50, 60, 81, 106, 109, 113, 119, 148, 184, 200, 211, 218, 221, 235, 239, 263 |
| abstract_inverted_index.way | 41, 149, 174 |
| abstract_inverted_index.yet | 245 |
| abstract_inverted_index.Yet, | 28 |
| abstract_inverted_index.down | 209 |
| abstract_inverted_index.even | 176 |
| abstract_inverted_index.fast | 225 |
| abstract_inverted_index.find | 134, 199 |
| abstract_inverted_index.from | 8 |
| abstract_inverted_index.have | 238 |
| abstract_inverted_index.high | 67 |
| abstract_inverted_index.into | 224 |
| abstract_inverted_index.more | 172 |
| abstract_inverted_index.only | 115 |
| abstract_inverted_index.puts | 49 |
| abstract_inverted_index.real | 71 |
| abstract_inverted_index.slow | 227 |
| abstract_inverted_index.such | 158 |
| abstract_inverted_index.that | 6, 62, 135 |
| abstract_inverted_index.this | 44, 74, 196 |
| abstract_inverted_index.tool | 250 |
| abstract_inverted_index.true | 14, 110 |
| abstract_inverted_index.wide | 24 |
| abstract_inverted_index.with | 92 |
| abstract_inverted_index.work | 31, 75 |
| abstract_inverted_index.agent | 33 |
| abstract_inverted_index.broad | 120 |
| abstract_inverted_index.faced | 91 |
| abstract_inverted_index.focus | 51 |
| abstract_inverted_index.lacks | 38 |
| abstract_inverted_index.learn | 166 |
| abstract_inverted_index.limit | 204 |
| abstract_inverted_index.range | 25 |
| abstract_inverted_index.state | 111 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.where | 105 |
| abstract_inverted_index.world | 18, 61 |
| abstract_inverted_index.would | 63 |
| abstract_inverted_index.across | 125 |
| abstract_inverted_index.agents | 90, 107, 164 |
| abstract_inverted_index.allows | 183 |
| abstract_inverted_index.arises | 7 |
| abstract_inverted_index.become | 242 |
| abstract_inverted_index.better | 167 |
| abstract_inverted_index.caused | 230 |
| abstract_inverted_index.demand | 69 |
| abstract_inverted_index.derive | 98 |
| abstract_inverted_index.either | 37 |
| abstract_inverted_index.impose | 64 |
| abstract_inverted_index.method | 182 |
| abstract_inverted_index.models | 58 |
| abstract_inverted_index.number | 143 |
| abstract_inverted_index.regard | 197 |
| abstract_inverted_index.reward | 215 |
| abstract_inverted_index.robust | 249 |
| abstract_inverted_index.social | 178, 255 |
| abstract_inverted_index.source | 45 |
| abstract_inverted_index.stable | 173 |
| abstract_inverted_index.states | 15 |
| abstract_inverted_index.theory | 189 |
| abstract_inverted_index.agents' | 9 |
| abstract_inverted_index.agents. | 72, 269 |
| abstract_inverted_index.between | 214 |
| abstract_inverted_index.classes | 127 |
| abstract_inverted_index.complex | 57 |
| abstract_inverted_index.creates | 138 |
| abstract_inverted_index.cycles, | 205 |
| abstract_inverted_index.effects | 3, 264 |
| abstract_inverted_index.faster, | 169 |
| abstract_inverted_index.formal, | 244 |
| abstract_inverted_index.further | 151 |
| abstract_inverted_index.general | 155 |
| abstract_inverted_index.machine | 258 |
| abstract_inverted_index.observe | 108 |
| abstract_inverted_index.optimal | 54 |
| abstract_inverted_index.partial | 10, 136, 232 |
| abstract_inverted_index.present | 100 |
| abstract_inverted_index.regimes | 216 |
| abstract_inverted_index.science | 256 |
| abstract_inverted_index.slowing | 208 |
| abstract_inverted_index.systems | 188 |
| abstract_inverted_index.worlds. | 95 |
| abstract_inverted_index.behavior | 83 |
| abstract_inverted_index.benefits | 140 |
| abstract_inverted_index.biology, | 254 |
| abstract_inverted_index.critical | 20, 207 |
| abstract_inverted_index.describe | 43, 80 |
| abstract_inverted_index.dynamics | 104, 124, 223, 237 |
| abstract_inverted_index.effects. | 159 |
| abstract_inverted_index.emergent | 82 |
| abstract_inverted_index.leaning. | 194 |
| abstract_inverted_index.learning | 34, 89, 103, 212, 222, 259 |
| abstract_inverted_index.modeling | 30 |
| abstract_inverted_index.outcomes | 168 |
| abstract_inverted_index.overcome | 177 |
| abstract_inverted_index.pointing | 147 |
| abstract_inverted_index.policies | 55 |
| abstract_inverted_index.previous | 29 |
| abstract_inverted_index.research | 152 |
| abstract_inverted_index.showcase | 118 |
| abstract_inverted_index.specific | 145 |
| abstract_inverted_index.systemic | 2 |
| abstract_inverted_index.systems. | 132 |
| abstract_inverted_index.Assessing | 0 |
| abstract_inverted_index.Therefore | 96 |
| abstract_inverted_index.cognitive | 68 |
| abstract_inverted_index.contexts, | 146 |
| abstract_inverted_index.different | 126 |
| abstract_inverted_index.dilemmas. | 179 |
| abstract_inverted_index.dynamical | 187 |
| abstract_inverted_index.emergence | 201 |
| abstract_inverted_index.instance, | 161 |
| abstract_inverted_index.observant | 163, 268 |
| abstract_inverted_index.obtaining | 53 |
| abstract_inverted_index.partially | 93, 129, 162, 191, 267 |
| abstract_inverted_index.plausible | 86 |
| abstract_inverted_index.potential | 240 |
| abstract_inverted_index.presented | 236 |
| abstract_inverted_index.processes | 213 |
| abstract_inverted_index.Therefore, | 234 |
| abstract_inverted_index.multiagent | 193 |
| abstract_inverted_index.observable | 94, 130, 192 |
| abstract_inverted_index.partially. | 116 |
| abstract_inverted_index.practical, | 246 |
| abstract_inverted_index.scenarios. | 27 |
| abstract_inverted_index.separation | 219 |
| abstract_inverted_index.systematic | 40 |
| abstract_inverted_index.application | 185 |
| abstract_inverted_index.directions, | 228 |
| abstract_inverted_index.efficiently | 79 |
| abstract_inverted_index.environment | 114 |
| abstract_inverted_index.interacting | 266 |
| abstract_inverted_index.investigate | 262 |
| abstract_inverted_index.lightweight | 247 |
| abstract_inverted_index.observation | 11 |
| abstract_inverted_index.researchers | 252 |
| abstract_inverted_index.uncertainty | 5, 47 |
| abstract_inverted_index.unintuitive | 139 |
| abstract_inverted_index.Furthermore, | 180 |
| abstract_inverted_index.biologically | 85 |
| abstract_inverted_index.catastrophic | 203 |
| abstract_inverted_index.parsimonious | 88 |
| abstract_inverted_index.applicability | 121 |
| abstract_inverted_index.deterministic | 101 |
| abstract_inverted_index.observability | 137 |
| abstract_inverted_index.reinforcement | 102 |
| abstract_inverted_index.understanding | 22, 156 |
| abstract_inverted_index.observability. | 233 |
| abstract_inverted_index.systematically | 261 |
| abstract_inverted_index.decision-making | 36 |
| abstract_inverted_index.unrealistically | 66 |
| abstract_inverted_index.agent-environment | 131 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.96532094 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |