Modelisation and estimation of heterogeneous variances in nonlinear mixed models Article Swipe
Nonlinear mixed models stand apart in mixed models methodology. Contrary to linear and generalized linear models, often used as black boxes, the trajectory function t in nonlinear models generally comes from the integration of dierential equations. This provides a biological interpretation for the parameters, whereas models are often more parsimonious. However, the estimation of the parameters in nonlinear mixed models is complex because random eects cannot be integrated out of the likelihood in closed form. As in all mixed models, especially those used to analyze longitudinal data, nonlinear models are well adapted to take into account between and within-cluster variation. However, one of the common assumptions of such models is that of independent, identically distributed residuals with a common variance; this assumption is unrealistic in many elds of applications. The objective of this study was to propose some models for the residual variance to take into account the potential heterogeneity of variance of the residuals, while limiting the number of parameters in these models. In this sense, we used a parametric approach based on a linear mixed model on the logvariance, as well as the classical power \meanvariance function. A classical inference method based on maximum likelihood theory was selected and we considered a stochastic EM algorithm, the SAEM-MCMC algorithm. The mixed model structure applied to the position and dispersion parameters is well adapted to the implementation of EM algorithms. Some instrumental distributions adapted to the analysis of these models, as well as some convergence criteria, were proposed in the MCMC step. The overall algorithm was numerically validated in both linear and nonlinear models, by comparing its results with those of an analytical EM algorithm (in the linear case) or other algorithms like those based on Gaussian quadrature. Finally, an application to the analysis of somatic cell scores in dairy cattle was presented. Several linear and nonlinear models were compared showing a clear gain obtained taking into account the heterogeneity of variances.
Related Topics
- Type
- dissertation
- Language
- en
- Landing Page
- https://pastel.hal.science/pastel-00004846
- OA Status
- green
- References
- 67
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2617144943
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2617144943Canonical identifier for this work in OpenAlex
- Title
-
Modelisation and estimation of heterogeneous variances in nonlinear mixed modelsWork title
- Type
-
dissertationOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2008Year of publication
- Publication date
-
2008-12-08Full publication date if available
- Authors
-
Mylène DuvalList of authors in order
- Landing page
-
https://pastel.hal.science/pastel-00004846Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pastel.hal.science/pastel-00004846Direct OA link when available
- Concepts
-
Generalized linear mixed model, Mixed model, Nonlinear system, Mathematics, Random effects model, Applied mathematics, Linear model, Restricted maximum likelihood, Likelihood function, Parametric statistics, Independent and identically distributed random variables, Convergence (economics), Mathematical optimization, Estimation theory, Algorithm, Statistics, Random variable, Economic growth, Medicine, Economics, Physics, Internal medicine, Meta-analysis, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
67Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2617144943 |
|---|---|
| doi | |
| ids.mag | 2617144943 |
| ids.openalex | https://openalex.org/W2617144943 |
| fwci | |
| type | dissertation |
| title | Modelisation and estimation of heterogeneous variances in nonlinear mixed models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10594 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic and phenotypic traits in livestock |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9883000254631042 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9842000007629395 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153720581 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6330647468566895 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5532490 |
| concepts[0].display_name | Generalized linear mixed model |
| concepts[1].id | https://openalex.org/C16012445 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6224012970924377 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1501135 |
| concepts[1].display_name | Mixed model |
| concepts[2].id | https://openalex.org/C158622935 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5996344089508057 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[2].display_name | Nonlinear system |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5894355177879333 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C168743327 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5187451839447021 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1826427 |
| concepts[4].display_name | Random effects model |
| concepts[5].id | https://openalex.org/C28826006 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5185564160346985 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[5].display_name | Applied mathematics |
| concepts[6].id | https://openalex.org/C163175372 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49609050154685974 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[6].display_name | Linear model |
| concepts[7].id | https://openalex.org/C61420037 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4825257956981659 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7316301 |
| concepts[7].display_name | Restricted maximum likelihood |
| concepts[8].id | https://openalex.org/C89106044 |
| concepts[8].level | 3 |
| concepts[8].score | 0.45786526799201965 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45284 |
| concepts[8].display_name | Likelihood function |
| concepts[9].id | https://openalex.org/C117251300 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4377690553665161 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[9].display_name | Parametric statistics |
| concepts[10].id | https://openalex.org/C141513077 |
| concepts[10].level | 3 |
| concepts[10].score | 0.43505656719207764 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q378542 |
| concepts[10].display_name | Independent and identically distributed random variables |
| concepts[11].id | https://openalex.org/C2777303404 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4230150282382965 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[11].display_name | Convergence (economics) |
| concepts[12].id | https://openalex.org/C126255220 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3965585231781006 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[12].display_name | Mathematical optimization |
| concepts[13].id | https://openalex.org/C167928553 |
| concepts[13].level | 2 |
| concepts[13].score | 0.36137157678604126 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1376021 |
| concepts[13].display_name | Estimation theory |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3177288770675659 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.27444517612457275 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C122123141 |
| concepts[16].level | 2 |
| concepts[16].score | 0.26640552282333374 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q176623 |
| concepts[16].display_name | Random variable |
| concepts[17].id | https://openalex.org/C50522688 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[17].display_name | Economic growth |
| concepts[18].id | https://openalex.org/C71924100 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[18].display_name | Medicine |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C126322002 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[21].display_name | Internal medicine |
| concepts[22].id | https://openalex.org/C95190672 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[22].display_name | Meta-analysis |
| concepts[23].id | https://openalex.org/C62520636 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[23].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/generalized-linear-mixed-model |
| keywords[0].score | 0.6330647468566895 |
| keywords[0].display_name | Generalized linear mixed model |
| keywords[1].id | https://openalex.org/keywords/mixed-model |
| keywords[1].score | 0.6224012970924377 |
| keywords[1].display_name | Mixed model |
| keywords[2].id | https://openalex.org/keywords/nonlinear-system |
| keywords[2].score | 0.5996344089508057 |
| keywords[2].display_name | Nonlinear system |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5894355177879333 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/random-effects-model |
| keywords[4].score | 0.5187451839447021 |
| keywords[4].display_name | Random effects model |
| keywords[5].id | https://openalex.org/keywords/applied-mathematics |
| keywords[5].score | 0.5185564160346985 |
| keywords[5].display_name | Applied mathematics |
| keywords[6].id | https://openalex.org/keywords/linear-model |
| keywords[6].score | 0.49609050154685974 |
| keywords[6].display_name | Linear model |
| keywords[7].id | https://openalex.org/keywords/restricted-maximum-likelihood |
| keywords[7].score | 0.4825257956981659 |
| keywords[7].display_name | Restricted maximum likelihood |
| keywords[8].id | https://openalex.org/keywords/likelihood-function |
| keywords[8].score | 0.45786526799201965 |
| keywords[8].display_name | Likelihood function |
| keywords[9].id | https://openalex.org/keywords/parametric-statistics |
| keywords[9].score | 0.4377690553665161 |
| keywords[9].display_name | Parametric statistics |
| keywords[10].id | https://openalex.org/keywords/independent-and-identically-distributed-random-variables |
| keywords[10].score | 0.43505656719207764 |
| keywords[10].display_name | Independent and identically distributed random variables |
| keywords[11].id | https://openalex.org/keywords/convergence |
| keywords[11].score | 0.4230150282382965 |
| keywords[11].display_name | Convergence (economics) |
| keywords[12].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[12].score | 0.3965585231781006 |
| keywords[12].display_name | Mathematical optimization |
| keywords[13].id | https://openalex.org/keywords/estimation-theory |
| keywords[13].score | 0.36137157678604126 |
| keywords[13].display_name | Estimation theory |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.3177288770675659 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.27444517612457275 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/random-variable |
| keywords[16].score | 0.26640552282333374 |
| keywords[16].display_name | Random variable |
| language | en |
| locations[0].id | pmh:oai:HAL:pastel-00004846v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402512 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[0].source.host_organization | https://openalex.org/I1294671590 |
| locations[0].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[0].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[0].license | other-oa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/doctoralThesis |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | https://pastel.hal.science/pastel-00004846 |
| locations[0].landing_page_url | https://pastel.hal.science/pastel-00004846 |
| locations[1].id | mag:2617144943 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://pastel.archives-ouvertes.fr/pastel-00004846 |
| authorships[0].author.id | https://openalex.org/A5110494705 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mylène Duval |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mylene Duval |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pastel.hal.science/pastel-00004846 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modelisation and estimation of heterogeneous variances in nonlinear mixed models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10594 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic and phenotypic traits in livestock |
| related_works | https://openalex.org/W276885350, https://openalex.org/W3163058507, https://openalex.org/W2403204516, https://openalex.org/W2737070071, https://openalex.org/W2331731258, https://openalex.org/W2182509596, https://openalex.org/W3186046688, https://openalex.org/W3204689413, https://openalex.org/W2141267866, https://openalex.org/W2900656902, https://openalex.org/W2528298693, https://openalex.org/W2762105572, https://openalex.org/W2182776424, https://openalex.org/W3005831305, https://openalex.org/W2613095180, https://openalex.org/W2138805387, https://openalex.org/W2923133598, https://openalex.org/W2610742247, https://openalex.org/W3186563141, https://openalex.org/W2963799705 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:HAL:pastel-00004846v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402512 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| best_oa_location.source.host_organization | https://openalex.org/I1294671590 |
| best_oa_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/doctoralThesis |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | https://pastel.hal.science/pastel-00004846 |
| best_oa_location.landing_page_url | https://pastel.hal.science/pastel-00004846 |
| primary_location.id | pmh:oai:HAL:pastel-00004846v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402512 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| primary_location.source.host_organization | https://openalex.org/I1294671590 |
| primary_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| primary_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| primary_location.license | other-oa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/doctoralThesis |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | https://pastel.hal.science/pastel-00004846 |
| primary_location.landing_page_url | https://pastel.hal.science/pastel-00004846 |
| publication_date | 2008-12-08 |
| publication_year | 2008 |
| referenced_works | https://openalex.org/W21072975, https://openalex.org/W204053929, https://openalex.org/W643529837, https://openalex.org/W2075384682, https://openalex.org/W1998531750, https://openalex.org/W2099751340, https://openalex.org/W2117180217, https://openalex.org/W1979635377, https://openalex.org/W3023623894, https://openalex.org/W2072634211, https://openalex.org/W2150295088, https://openalex.org/W2029761439, https://openalex.org/W2087964979, https://openalex.org/W2094434198, https://openalex.org/W3006452802, https://openalex.org/W2094551994, https://openalex.org/W2125267558, https://openalex.org/W2121662981, https://openalex.org/W1988520084, https://openalex.org/W2113359871, https://openalex.org/W2058815839, https://openalex.org/W2154065358, https://openalex.org/W129305155, https://openalex.org/W2082643767, https://openalex.org/W1587094587, https://openalex.org/W142658225, https://openalex.org/W1985093013, https://openalex.org/W2017696952, https://openalex.org/W1973712589, https://openalex.org/W2086311942, https://openalex.org/W2326225147, https://openalex.org/W1980911127, https://openalex.org/W2046076301, https://openalex.org/W2053020350, https://openalex.org/W2325147017, https://openalex.org/W2230049830, https://openalex.org/W2936971519, https://openalex.org/W2098787020, https://openalex.org/W2148534890, https://openalex.org/W2090692107, https://openalex.org/W2048423449, https://openalex.org/W2044758663, https://openalex.org/W2063830806, https://openalex.org/W1994616650, https://openalex.org/W2049633694, https://openalex.org/W1512909729, https://openalex.org/W1995443897, https://openalex.org/W2053742104, https://openalex.org/W1495760228, https://openalex.org/W1998967412, https://openalex.org/W2085289178, https://openalex.org/W256249144, https://openalex.org/W2139260595, https://openalex.org/W2017899835, https://openalex.org/W2073732659, https://openalex.org/W2050399235, https://openalex.org/W2471988103, https://openalex.org/W2059936183, https://openalex.org/W2154780229, https://openalex.org/W2168175751, https://openalex.org/W1979969656, https://openalex.org/W602065632, https://openalex.org/W2162870748, https://openalex.org/W1596437242, https://openalex.org/W20479761, https://openalex.org/W2091276705, https://openalex.org/W2058404065 |
| referenced_works_count | 67 |
| abstract_inverted_index.A | 189 |
| abstract_inverted_index.a | 38, 117, 169, 174, 203, 311 |
| abstract_inverted_index.t | 24 |
| abstract_inverted_index.As | 75 |
| abstract_inverted_index.EM | 205, 228, 273 |
| abstract_inverted_index.In | 164 |
| abstract_inverted_index.an | 271, 289 |
| abstract_inverted_index.as | 18, 181, 183, 240, 242 |
| abstract_inverted_index.be | 66 |
| abstract_inverted_index.by | 264 |
| abstract_inverted_index.in | 5, 25, 56, 72, 76, 124, 161, 248, 258, 298 |
| abstract_inverted_index.is | 60, 109, 122, 221 |
| abstract_inverted_index.of | 33, 53, 69, 102, 106, 111, 127, 131, 150, 152, 159, 227, 237, 270, 294, 320 |
| abstract_inverted_index.on | 173, 178, 194, 285 |
| abstract_inverted_index.or | 279 |
| abstract_inverted_index.to | 10, 83, 92, 135, 143, 215, 224, 234, 291 |
| abstract_inverted_index.we | 167, 201 |
| abstract_inverted_index.(in | 275 |
| abstract_inverted_index.The | 129, 210, 252 |
| abstract_inverted_index.all | 77 |
| abstract_inverted_index.and | 12, 97, 200, 218, 261, 305 |
| abstract_inverted_index.are | 46, 89 |
| abstract_inverted_index.for | 41, 139 |
| abstract_inverted_index.its | 266 |
| abstract_inverted_index.one | 101 |
| abstract_inverted_index.out | 68 |
| abstract_inverted_index.the | 21, 31, 42, 51, 54, 70, 103, 140, 147, 153, 157, 179, 184, 207, 216, 225, 235, 249, 276, 292, 318 |
| abstract_inverted_index.was | 134, 198, 255, 301 |
| abstract_inverted_index.MCMC | 250 |
| abstract_inverted_index.Some | 230 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.both | 259 |
| abstract_inverted_index.cell | 296 |
| abstract_inverted_index.elds | 126 |
| abstract_inverted_index.from | 30 |
| abstract_inverted_index.gain | 313 |
| abstract_inverted_index.into | 94, 145, 316 |
| abstract_inverted_index.like | 282 |
| abstract_inverted_index.many | 125 |
| abstract_inverted_index.more | 48 |
| abstract_inverted_index.some | 137, 243 |
| abstract_inverted_index.such | 107 |
| abstract_inverted_index.take | 93, 144 |
| abstract_inverted_index.that | 110 |
| abstract_inverted_index.this | 120, 132, 165 |
| abstract_inverted_index.used | 17, 82, 168 |
| abstract_inverted_index.well | 90, 182, 222, 241 |
| abstract_inverted_index.were | 246, 308 |
| abstract_inverted_index.with | 116, 268 |
| abstract_inverted_index.apart | 4 |
| abstract_inverted_index.based | 172, 193, 284 |
| abstract_inverted_index.black | 19 |
| abstract_inverted_index.case) | 278 |
| abstract_inverted_index.clear | 312 |
| abstract_inverted_index.comes | 29 |
| abstract_inverted_index.dairy | 299 |
| abstract_inverted_index.data, | 86 |
| abstract_inverted_index.eects | 64 |
| abstract_inverted_index.form. | 74 |
| abstract_inverted_index.mixed | 1, 6, 58, 78, 176, 211 |
| abstract_inverted_index.model | 177, 212 |
| abstract_inverted_index.often | 16, 47 |
| abstract_inverted_index.other | 280 |
| abstract_inverted_index.power | 186 |
| abstract_inverted_index.stand | 3 |
| abstract_inverted_index.step. | 251 |
| abstract_inverted_index.study | 133 |
| abstract_inverted_index.these | 162, 238 |
| abstract_inverted_index.those | 81, 269, 283 |
| abstract_inverted_index.while | 155 |
| abstract_inverted_index.boxes, | 20 |
| abstract_inverted_index.cannot | 65 |
| abstract_inverted_index.cattle | 300 |
| abstract_inverted_index.closed | 73 |
| abstract_inverted_index.common | 104, 118 |
| abstract_inverted_index.linear | 11, 14, 175, 260, 277, 304 |
| abstract_inverted_index.method | 192 |
| abstract_inverted_index.models | 2, 7, 27, 45, 59, 88, 108, 138, 307 |
| abstract_inverted_index.number | 158 |
| abstract_inverted_index.random | 63 |
| abstract_inverted_index.scores | 297 |
| abstract_inverted_index.sense, | 166 |
| abstract_inverted_index.taking | 315 |
| abstract_inverted_index.theory | 197 |
| abstract_inverted_index.Several | 303 |
| abstract_inverted_index.account | 95, 146, 317 |
| abstract_inverted_index.adapted | 91, 223, 233 |
| abstract_inverted_index.analyze | 84 |
| abstract_inverted_index.applied | 214 |
| abstract_inverted_index.because | 62 |
| abstract_inverted_index.between | 96 |
| abstract_inverted_index.complex | 61 |
| abstract_inverted_index.maximum | 195 |
| abstract_inverted_index.models, | 15, 79, 239, 263 |
| abstract_inverted_index.models. | 163 |
| abstract_inverted_index.overall | 253 |
| abstract_inverted_index.propose | 136 |
| abstract_inverted_index.results | 267 |
| abstract_inverted_index.showing | 310 |
| abstract_inverted_index.somatic | 295 |
| abstract_inverted_index.whereas | 44 |
| abstract_inverted_index.Contrary | 9 |
| abstract_inverted_index.Finally, | 288 |
| abstract_inverted_index.Gaussian | 286 |
| abstract_inverted_index.However, | 50, 100 |
| abstract_inverted_index.analysis | 236, 293 |
| abstract_inverted_index.approach | 171 |
| abstract_inverted_index.compared | 309 |
| abstract_inverted_index.function | 23 |
| abstract_inverted_index.limiting | 156 |
| abstract_inverted_index.obtained | 314 |
| abstract_inverted_index.position | 217 |
| abstract_inverted_index.proposed | 247 |
| abstract_inverted_index.provides | 37 |
| abstract_inverted_index.residual | 141 |
| abstract_inverted_index.selected | 199 |
| abstract_inverted_index.variance | 142, 151 |
| abstract_inverted_index.Nonlinear | 0 |
| abstract_inverted_index.SAEM-MCMC | 208 |
| abstract_inverted_index.algorithm | 254, 274 |
| abstract_inverted_index.classical | 185, 190 |
| abstract_inverted_index.comparing | 265 |
| abstract_inverted_index.criteria, | 245 |
| abstract_inverted_index.function. | 188 |
| abstract_inverted_index.generally | 28 |
| abstract_inverted_index.inference | 191 |
| abstract_inverted_index.nonlinear | 26, 57, 87, 262, 306 |
| abstract_inverted_index.objective | 130 |
| abstract_inverted_index.potential | 148 |
| abstract_inverted_index.residuals | 115 |
| abstract_inverted_index.structure | 213 |
| abstract_inverted_index.validated | 257 |
| abstract_inverted_index.variance; | 119 |
| abstract_inverted_index.algorithm, | 206 |
| abstract_inverted_index.algorithm. | 209 |
| abstract_inverted_index.algorithms | 281 |
| abstract_inverted_index.analytical | 272 |
| abstract_inverted_index.assumption | 121 |
| abstract_inverted_index.biological | 39 |
| abstract_inverted_index.considered | 202 |
| abstract_inverted_index.dierential | 34 |
| abstract_inverted_index.dispersion | 219 |
| abstract_inverted_index.equations. | 35 |
| abstract_inverted_index.especially | 80 |
| abstract_inverted_index.estimation | 52 |
| abstract_inverted_index.integrated | 67 |
| abstract_inverted_index.likelihood | 71, 196 |
| abstract_inverted_index.parameters | 55, 160, 220 |
| abstract_inverted_index.parametric | 170 |
| abstract_inverted_index.presented. | 302 |
| abstract_inverted_index.residuals, | 154 |
| abstract_inverted_index.stochastic | 204 |
| abstract_inverted_index.trajectory | 22 |
| abstract_inverted_index.variances. | 321 |
| abstract_inverted_index.variation. | 99 |
| abstract_inverted_index.algorithms. | 229 |
| abstract_inverted_index.application | 290 |
| abstract_inverted_index.assumptions | 105 |
| abstract_inverted_index.convergence | 244 |
| abstract_inverted_index.distributed | 114 |
| abstract_inverted_index.generalized | 13 |
| abstract_inverted_index.identically | 113 |
| abstract_inverted_index.integration | 32 |
| abstract_inverted_index.numerically | 256 |
| abstract_inverted_index.parameters, | 43 |
| abstract_inverted_index.quadrature. | 287 |
| abstract_inverted_index.unrealistic | 123 |
| abstract_inverted_index.independent, | 112 |
| abstract_inverted_index.instrumental | 231 |
| abstract_inverted_index.logvariance, | 180 |
| abstract_inverted_index.longitudinal | 85 |
| abstract_inverted_index.methodology. | 8 |
| abstract_inverted_index.\meanvariance | 187 |
| abstract_inverted_index.applications. | 128 |
| abstract_inverted_index.distributions | 232 |
| abstract_inverted_index.heterogeneity | 149, 319 |
| abstract_inverted_index.parsimonious. | 49 |
| abstract_inverted_index.implementation | 226 |
| abstract_inverted_index.interpretation | 40 |
| abstract_inverted_index.within-cluster | 98 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5110494705 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |