Modelling and Experimental Validation of Improved Performance of Lithium-Ion Batteries Having Thick Electrodes with Laser-Ablated Micro-Structures Article Swipe
YOU?
·
· 2022
· Open Access
·
For widespread adoption of electric vehicles, lithium-ion batteries (LiBs) need to achieve energy densities of >275 Wh/kg, cost less than $100/Wh, and charge to more than 80% capacity within 15 minutes. Increasing the battery electrode thicknesses is one way to increase cell energy densities while also saving on cell manufacturing cost by increasing the ratio of electrode active material to inactive material within each cell. However, increased electrode loading is often accompanied by decreased Li+-ion diffusion across the full thick electrodes. This leads to significant cell polarization that prevents full capacity utilization and accelerates cell degradation, especially at fast charging/discharging rates. The introduction of secondary pore networks in thick battery electrodes alleviates some of the trade-offs between energy and power performance. These microstructures provide low tortuosity pathways for facile Li+-ion diffusion deep into the thick electrodes, diminishing detrimental concentration gradients within the cell. Ultrafast-pulsed laser ablation is a promising method to introduce micro pores or channels in thick battery electrodes as it allows for precise control of pattern geometries, results in minimal damage to the electrode and can be introduced into existing roll-to-roll electrode manufacturing lines. Herein, the limitations of thick planer electrodes and the advanced predictive models to identify optimal electrode patterns for improved cycling performance will be presented. The impact of electrode laser patterning to create secondary pore networks also will be discussed. Materials characterization techniques (SEM-EDS, XRD) were used to explore the affect ultrafast laser ablation had on the electrode materials’ morphology and structure. The improvements in the patterned electrodes’ electrochemical cycling performances and degrees of wetting will be compared to a pristine baseline case. Finally, the discrepancies between experimentally obtained data and model predictions will be explained.
Related Topics
- Type
- paratext
- Language
- en
- Landing Page
- https://www.osti.gov/biblio/1889266
- https://www.osti.gov/biblio/1889266
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297933089
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297933089Canonical identifier for this work in OpenAlex
- Title
-
Modelling and Experimental Validation of Improved Performance of Lithium-Ion Batteries Having Thick Electrodes with Laser-Ablated Micro-StructuresWork title
- Type
-
paratextOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-28Full publication date if available
- Authors
-
Nathan Dunlap, Dana B. Kern, Francois L. E. Usseglio‐Viretta, Peter J. Weddle, Nathaniel Sunderlin, Donal P. Finegan, Bertrand J. Tremolet de VillersList of authors in order
- Landing page
-
https://www.osti.gov/biblio/1889266Publisher landing page
- PDF URL
-
https://www.osti.gov/biblio/1889266Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1889266Direct OA link when available
- Concepts
-
Electrode, Materials science, Lithium (medication), Laser, Ion, Optoelectronics, Laser ablation, Optics, Chemistry, Organic chemistry, Physical chemistry, Physics, Medicine, EndocrinologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297933089 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4297933089 |
| fwci | |
| type | paratext |
| title | Modelling and Experimental Validation of Improved Performance of Lithium-Ion Batteries Having Thick Electrodes with Laser-Ablated Micro-Structures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11005 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9519000053405762 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Radiation Effects in Electronics |
| topics[1].id | https://openalex.org/T10472 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9251999855041504 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Semiconductor materials and devices |
| topics[2].id | https://openalex.org/T10781 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9240000247955322 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Plasma Diagnostics and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C17525397 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7753720283508301 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q176140 |
| concepts[0].display_name | Electrode |
| concepts[1].id | https://openalex.org/C192562407 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7394462823867798 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[1].display_name | Materials science |
| concepts[2].id | https://openalex.org/C2778541603 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7108057737350464 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q152763 |
| concepts[2].display_name | Lithium (medication) |
| concepts[3].id | https://openalex.org/C520434653 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5809235572814941 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q38867 |
| concepts[3].display_name | Laser |
| concepts[4].id | https://openalex.org/C145148216 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5751606822013855 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q36496 |
| concepts[4].display_name | Ion |
| concepts[5].id | https://openalex.org/C49040817 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5500600934028625 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[5].display_name | Optoelectronics |
| concepts[6].id | https://openalex.org/C2779188808 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5271632075309753 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1806547 |
| concepts[6].display_name | Laser ablation |
| concepts[7].id | https://openalex.org/C120665830 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1853102743625641 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[7].display_name | Optics |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.10008135437965393 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C178790620 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[9].display_name | Organic chemistry |
| concepts[10].id | https://openalex.org/C147789679 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[10].display_name | Physical chemistry |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C134018914 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[13].display_name | Endocrinology |
| keywords[0].id | https://openalex.org/keywords/electrode |
| keywords[0].score | 0.7753720283508301 |
| keywords[0].display_name | Electrode |
| keywords[1].id | https://openalex.org/keywords/materials-science |
| keywords[1].score | 0.7394462823867798 |
| keywords[1].display_name | Materials science |
| keywords[2].id | https://openalex.org/keywords/lithium |
| keywords[2].score | 0.7108057737350464 |
| keywords[2].display_name | Lithium (medication) |
| keywords[3].id | https://openalex.org/keywords/laser |
| keywords[3].score | 0.5809235572814941 |
| keywords[3].display_name | Laser |
| keywords[4].id | https://openalex.org/keywords/ion |
| keywords[4].score | 0.5751606822013855 |
| keywords[4].display_name | Ion |
| keywords[5].id | https://openalex.org/keywords/optoelectronics |
| keywords[5].score | 0.5500600934028625 |
| keywords[5].display_name | Optoelectronics |
| keywords[6].id | https://openalex.org/keywords/laser-ablation |
| keywords[6].score | 0.5271632075309753 |
| keywords[6].display_name | Laser ablation |
| keywords[7].id | https://openalex.org/keywords/optics |
| keywords[7].score | 0.1853102743625641 |
| keywords[7].display_name | Optics |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.10008135437965393 |
| keywords[8].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:osti.gov:1889266 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402487 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[0].source.host_organization | https://openalex.org/I139351228 |
| locations[0].source.host_organization_name | Office of Scientific and Technical Information |
| locations[0].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[0].license | |
| locations[0].pdf_url | https://www.osti.gov/biblio/1889266 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://www.osti.gov/biblio/1889266 |
| authorships[0].author.id | https://openalex.org/A5041329068 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9002-9602 |
| authorships[0].author.display_name | Nathan Dunlap |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dunlap, Nathan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5000181314 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0814-8723 |
| authorships[1].author.display_name | Dana B. Kern |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sulas-Kern, Dana |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5001588200 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7559-8874 |
| authorships[2].author.display_name | Francois L. E. Usseglio‐Viretta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Usseglio-Viretta, Francois |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047858603 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1600-0756 |
| authorships[3].author.display_name | Peter J. Weddle |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weddle, Peter |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5077755567 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Nathaniel Sunderlin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sunderlin, Nathaniel |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5069463470 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4633-560X |
| authorships[5].author.display_name | Donal P. Finegan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Finegan, Donal |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5058350226 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8685-539X |
| authorships[6].author.display_name | Bertrand J. Tremolet de Villers |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Tremolet de Villers, Bertrand J. |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1889266 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modelling and Experimental Validation of Improved Performance of Lithium-Ion Batteries Having Thick Electrodes with Laser-Ablated Micro-Structures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T11005 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9519000053405762 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Radiation Effects in Electronics |
| related_works | https://openalex.org/W2109457304, https://openalex.org/W121572956, https://openalex.org/W2047941755, https://openalex.org/W1967092215, https://openalex.org/W2047086907, https://openalex.org/W2013521219, https://openalex.org/W4290155350, https://openalex.org/W1971183125, https://openalex.org/W2001153889, https://openalex.org/W2012930172 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:osti.gov:1889266 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.osti.gov/biblio/1889266 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1889266 |
| primary_location.id | pmh:oai:osti.gov:1889266 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402487 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| primary_location.source.host_organization | https://openalex.org/I139351228 |
| primary_location.source.host_organization_name | Office of Scientific and Technical Information |
| primary_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| primary_location.license | |
| primary_location.pdf_url | https://www.osti.gov/biblio/1889266 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://www.osti.gov/biblio/1889266 |
| publication_date | 2022-09-28 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 147, 264 |
| abstract_inverted_index.15 | 29 |
| abstract_inverted_index.as | 160 |
| abstract_inverted_index.at | 97 |
| abstract_inverted_index.be | 178, 208, 223, 261, 279 |
| abstract_inverted_index.by | 51, 72 |
| abstract_inverted_index.in | 107, 156, 170, 249 |
| abstract_inverted_index.is | 36, 69, 146 |
| abstract_inverted_index.it | 161 |
| abstract_inverted_index.of | 3, 14, 55, 103, 113, 166, 189, 212, 258 |
| abstract_inverted_index.on | 47, 240 |
| abstract_inverted_index.or | 154 |
| abstract_inverted_index.to | 10, 23, 39, 59, 83, 150, 173, 198, 216, 232, 263 |
| abstract_inverted_index.80% | 26 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.The | 101, 210, 247 |
| abstract_inverted_index.and | 21, 92, 118, 176, 193, 245, 256, 275 |
| abstract_inverted_index.can | 177 |
| abstract_inverted_index.for | 127, 163, 203 |
| abstract_inverted_index.had | 239 |
| abstract_inverted_index.low | 124 |
| abstract_inverted_index.one | 37 |
| abstract_inverted_index.the | 32, 53, 77, 114, 133, 141, 174, 187, 194, 234, 241, 250, 269 |
| abstract_inverted_index.way | 38 |
| abstract_inverted_index.This | 81 |
| abstract_inverted_index.XRD) | 229 |
| abstract_inverted_index.also | 45, 221 |
| abstract_inverted_index.cell | 41, 48, 85, 94 |
| abstract_inverted_index.cost | 17, 50 |
| abstract_inverted_index.data | 274 |
| abstract_inverted_index.deep | 131 |
| abstract_inverted_index.each | 63 |
| abstract_inverted_index.fast | 98 |
| abstract_inverted_index.full | 78, 89 |
| abstract_inverted_index.into | 132, 180 |
| abstract_inverted_index.less | 18 |
| abstract_inverted_index.more | 24 |
| abstract_inverted_index.need | 9 |
| abstract_inverted_index.pore | 105, 219 |
| abstract_inverted_index.some | 112 |
| abstract_inverted_index.than | 19, 25 |
| abstract_inverted_index.that | 87 |
| abstract_inverted_index.used | 231 |
| abstract_inverted_index.were | 230 |
| abstract_inverted_index.will | 207, 222, 260, 278 |
| abstract_inverted_index.These | 121 |
| abstract_inverted_index.case. | 267 |
| abstract_inverted_index.cell. | 64, 142 |
| abstract_inverted_index.laser | 144, 214, 237 |
| abstract_inverted_index.leads | 82 |
| abstract_inverted_index.micro | 152 |
| abstract_inverted_index.model | 276 |
| abstract_inverted_index.often | 70 |
| abstract_inverted_index.pores | 153 |
| abstract_inverted_index.power | 119 |
| abstract_inverted_index.ratio | 54 |
| abstract_inverted_index.thick | 79, 108, 134, 157, 190 |
| abstract_inverted_index.while | 44 |
| abstract_inverted_index.(LiBs) | 8 |
| abstract_inverted_index.Wh/kg, | 16 |
| abstract_inverted_index.across | 76 |
| abstract_inverted_index.active | 57 |
| abstract_inverted_index.affect | 235 |
| abstract_inverted_index.allows | 162 |
| abstract_inverted_index.charge | 22 |
| abstract_inverted_index.create | 217 |
| abstract_inverted_index.damage | 172 |
| abstract_inverted_index.energy | 12, 42, 117 |
| abstract_inverted_index.facile | 128 |
| abstract_inverted_index.impact | 211 |
| abstract_inverted_index.lines. | 185 |
| abstract_inverted_index.method | 149 |
| abstract_inverted_index.models | 197 |
| abstract_inverted_index.planer | 191 |
| abstract_inverted_index.rates. | 100 |
| abstract_inverted_index.saving | 46 |
| abstract_inverted_index.within | 28, 62, 140 |
| abstract_inverted_index.>275 | 15 |
| abstract_inverted_index.Herein, | 186 |
| abstract_inverted_index.Li+-ion | 74, 129 |
| abstract_inverted_index.achieve | 11 |
| abstract_inverted_index.battery | 33, 109, 158 |
| abstract_inverted_index.between | 116, 271 |
| abstract_inverted_index.control | 165 |
| abstract_inverted_index.cycling | 205, 254 |
| abstract_inverted_index.degrees | 257 |
| abstract_inverted_index.explore | 233 |
| abstract_inverted_index.loading | 68 |
| abstract_inverted_index.minimal | 171 |
| abstract_inverted_index.optimal | 200 |
| abstract_inverted_index.pattern | 167 |
| abstract_inverted_index.precise | 164 |
| abstract_inverted_index.provide | 123 |
| abstract_inverted_index.results | 169 |
| abstract_inverted_index.wetting | 259 |
| abstract_inverted_index.$100/Wh, | 20 |
| abstract_inverted_index.Finally, | 268 |
| abstract_inverted_index.However, | 65 |
| abstract_inverted_index.ablation | 145, 238 |
| abstract_inverted_index.adoption | 2 |
| abstract_inverted_index.advanced | 195 |
| abstract_inverted_index.baseline | 266 |
| abstract_inverted_index.capacity | 27, 90 |
| abstract_inverted_index.channels | 155 |
| abstract_inverted_index.compared | 262 |
| abstract_inverted_index.electric | 4 |
| abstract_inverted_index.existing | 181 |
| abstract_inverted_index.identify | 199 |
| abstract_inverted_index.improved | 204 |
| abstract_inverted_index.inactive | 60 |
| abstract_inverted_index.increase | 40 |
| abstract_inverted_index.material | 58, 61 |
| abstract_inverted_index.minutes. | 30 |
| abstract_inverted_index.networks | 106, 220 |
| abstract_inverted_index.obtained | 273 |
| abstract_inverted_index.pathways | 126 |
| abstract_inverted_index.patterns | 202 |
| abstract_inverted_index.prevents | 88 |
| abstract_inverted_index.pristine | 265 |
| abstract_inverted_index.(SEM-EDS, | 228 |
| abstract_inverted_index.Materials | 225 |
| abstract_inverted_index.batteries | 7 |
| abstract_inverted_index.decreased | 73 |
| abstract_inverted_index.densities | 13, 43 |
| abstract_inverted_index.diffusion | 75, 130 |
| abstract_inverted_index.electrode | 34, 56, 67, 175, 183, 201, 213, 242 |
| abstract_inverted_index.gradients | 139 |
| abstract_inverted_index.increased | 66 |
| abstract_inverted_index.introduce | 151 |
| abstract_inverted_index.patterned | 251 |
| abstract_inverted_index.promising | 148 |
| abstract_inverted_index.secondary | 104, 218 |
| abstract_inverted_index.ultrafast | 236 |
| abstract_inverted_index.vehicles, | 5 |
| abstract_inverted_index.Increasing | 31 |
| abstract_inverted_index.alleviates | 111 |
| abstract_inverted_index.discussed. | 224 |
| abstract_inverted_index.electrodes | 110, 159, 192 |
| abstract_inverted_index.especially | 96 |
| abstract_inverted_index.explained. | 280 |
| abstract_inverted_index.increasing | 52 |
| abstract_inverted_index.introduced | 179 |
| abstract_inverted_index.morphology | 244 |
| abstract_inverted_index.patterning | 215 |
| abstract_inverted_index.predictive | 196 |
| abstract_inverted_index.presented. | 209 |
| abstract_inverted_index.structure. | 246 |
| abstract_inverted_index.techniques | 227 |
| abstract_inverted_index.tortuosity | 125 |
| abstract_inverted_index.trade-offs | 115 |
| abstract_inverted_index.widespread | 1 |
| abstract_inverted_index.accelerates | 93 |
| abstract_inverted_index.accompanied | 71 |
| abstract_inverted_index.detrimental | 137 |
| abstract_inverted_index.diminishing | 136 |
| abstract_inverted_index.electrodes, | 135 |
| abstract_inverted_index.electrodes. | 80 |
| abstract_inverted_index.geometries, | 168 |
| abstract_inverted_index.limitations | 188 |
| abstract_inverted_index.lithium-ion | 6 |
| abstract_inverted_index.performance | 206 |
| abstract_inverted_index.predictions | 277 |
| abstract_inverted_index.significant | 84 |
| abstract_inverted_index.thicknesses | 35 |
| abstract_inverted_index.utilization | 91 |
| abstract_inverted_index.degradation, | 95 |
| abstract_inverted_index.improvements | 248 |
| abstract_inverted_index.introduction | 102 |
| abstract_inverted_index.materials’ | 243 |
| abstract_inverted_index.performance. | 120 |
| abstract_inverted_index.performances | 255 |
| abstract_inverted_index.polarization | 86 |
| abstract_inverted_index.roll-to-roll | 182 |
| abstract_inverted_index.concentration | 138 |
| abstract_inverted_index.discrepancies | 270 |
| abstract_inverted_index.electrodes’ | 252 |
| abstract_inverted_index.manufacturing | 49, 184 |
| abstract_inverted_index.experimentally | 272 |
| abstract_inverted_index.electrochemical | 253 |
| abstract_inverted_index.microstructures | 122 |
| abstract_inverted_index.Ultrafast-pulsed | 143 |
| abstract_inverted_index.characterization | 226 |
| abstract_inverted_index.charging/discharging | 99 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |