Modelling chlorophyll-a concentrations in a continental aquatic ecosystem of the Brazilian semi-arid region based on remote sensing Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.20011393
Remote-sensing data are essential to evaluate dynamic processes such as eutrophication and increases in the concentration of suspended sediments in continental aquatic systems. The aim of this study, therefore, was to develop models to estimate chlorophyll-a concentrations from remote-sensing data in continental waters of the Brazilian semi-arid region. The study area corresponds to the Orós reservoir, located in the state of Ceará. The models were developed based on measurements taken at 20 sampling points. Water samples were collected from the reservoir to i) analyse the chlorophyll-a, electrical conductivity, pH and turbidity; ii) take optical measurements in situ of water transparency and spectral radiance. Radiance measurements were carried out using an ASD FieldSpec®3 Hi-Res spectroradiometer. The spectral data were later transformed into reflectance values and used to test the performance of several models found in the literature for estimating chlorophyll-a. The results showed that for the three-band model, the maximum value for the coefficient of determination (R2), of 0.88, was obtained using the λ1 = 660 nm, λ2 = 690 nm and λ3 = 717 nm spectral bands. The model employing two spectral bands presented the best performance (R2 = 0.87) in the λ1 = 660 nm and λ2 = 690 nm bands. An absolute mean error of 5.35 and 5.00 µg L-1 was found for the three- and two-band models respectively. The developed models are reliable, showing that chlorophyll-a concentrations can be quantified from remote-sensing field data with a high degree of accuracy.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.20011393
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394554453
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394554453Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.20011393Digital Object Identifier
- Title
-
Modelling chlorophyll-a concentrations in a continental aquatic ecosystem of the Brazilian semi-arid region based on remote sensingWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Fernando Bezerra Lopes, Cláudio Clemente Faria Barbosa, Evlyn Márcia Leão de Moraes Novo, Lino Augusto Sander de Carvalho, Eunice Maia de Andrade, Adunias dos Santos TeixeiraList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.20011393Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.20011393Direct OA link when available
- Concepts
-
Arid, Ecosystem, Environmental science, Chlorophyll a, Aquatic ecosystem, Geography, Remote sensing, Continental shelf, Oceanography, Ecology, Geology, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394554453 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.20011393 |
| ids.doi | https://doi.org/10.6084/m9.figshare.20011393 |
| ids.openalex | https://openalex.org/W4394554453 |
| fwci | |
| type | dataset |
| title | Modelling chlorophyll-a concentrations in a continental aquatic ecosystem of the Brazilian semi-arid region based on remote sensing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14249 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9593999981880188 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2311 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Water Quality Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150772632 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7980762720108032 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1330709 |
| concepts[0].display_name | Arid |
| concepts[1].id | https://openalex.org/C110872660 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6458889245986938 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q37813 |
| concepts[1].display_name | Ecosystem |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5499741435050964 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C2778902199 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5213128924369812 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q133878 |
| concepts[3].display_name | Chlorophyll a |
| concepts[4].id | https://openalex.org/C175327387 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5169712901115417 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3289906 |
| concepts[4].display_name | Aquatic ecosystem |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4214748740196228 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C62649853 |
| concepts[6].level | 1 |
| concepts[6].score | 0.42090967297554016 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[6].display_name | Remote sensing |
| concepts[7].id | https://openalex.org/C184751465 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41372185945510864 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q134851 |
| concepts[7].display_name | Continental shelf |
| concepts[8].id | https://openalex.org/C111368507 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39192402362823486 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[8].display_name | Oceanography |
| concepts[9].id | https://openalex.org/C18903297 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3320939540863037 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[9].display_name | Ecology |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.22989684343338013 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09926605224609375 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08460786938667297 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/arid |
| keywords[0].score | 0.7980762720108032 |
| keywords[0].display_name | Arid |
| keywords[1].id | https://openalex.org/keywords/ecosystem |
| keywords[1].score | 0.6458889245986938 |
| keywords[1].display_name | Ecosystem |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.5499741435050964 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/chlorophyll-a |
| keywords[3].score | 0.5213128924369812 |
| keywords[3].display_name | Chlorophyll a |
| keywords[4].id | https://openalex.org/keywords/aquatic-ecosystem |
| keywords[4].score | 0.5169712901115417 |
| keywords[4].display_name | Aquatic ecosystem |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.4214748740196228 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/remote-sensing |
| keywords[6].score | 0.42090967297554016 |
| keywords[6].display_name | Remote sensing |
| keywords[7].id | https://openalex.org/keywords/continental-shelf |
| keywords[7].score | 0.41372185945510864 |
| keywords[7].display_name | Continental shelf |
| keywords[8].id | https://openalex.org/keywords/oceanography |
| keywords[8].score | 0.39192402362823486 |
| keywords[8].display_name | Oceanography |
| keywords[9].id | https://openalex.org/keywords/ecology |
| keywords[9].score | 0.3320939540863037 |
| keywords[9].display_name | Ecology |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.22989684343338013 |
| keywords[10].display_name | Geology |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.09926605224609375 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/botany |
| keywords[12].score | 0.08460786938667297 |
| keywords[12].display_name | Botany |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.20011393 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.20011393 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5107093086 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8285-2925 |
| authorships[0].author.display_name | Fernando Bezerra Lopes |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fernando Bezerra Lopes |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005808403 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3221-9774 |
| authorships[1].author.display_name | Cláudio Clemente Faria Barbosa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cláudio Clemente Faria Barbosa |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047123132 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1223-9276 |
| authorships[2].author.display_name | Evlyn Márcia Leão de Moraes Novo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Evlyn Marcia Leão de Moraes Novo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5090712416 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8839-5366 |
| authorships[3].author.display_name | Lino Augusto Sander de Carvalho |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lino Augusto Sander de Carvalho |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5037049471 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9750-0364 |
| authorships[4].author.display_name | Eunice Maia de Andrade |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Eunice Maia de Andrade |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5016700564 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1480-0944 |
| authorships[5].author.display_name | Adunias dos Santos Teixeira |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Adunias dos Santos Teixeira |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.20011393 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modelling chlorophyll-a concentrations in a continental aquatic ecosystem of the Brazilian semi-arid region based on remote sensing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14249 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9593999981880188 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2311 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Water Quality Monitoring and Analysis |
| related_works | https://openalex.org/W2897123541, https://openalex.org/W170161335, https://openalex.org/W2095340893, https://openalex.org/W1967325971, https://openalex.org/W4238612105, https://openalex.org/W2999852864, https://openalex.org/W2117438222, https://openalex.org/W2756417226, https://openalex.org/W1603104047, https://openalex.org/W2590292227 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.20011393 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.20011393 |
| primary_location.id | doi:10.6084/m9.figshare.20011393 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.20011393 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 164, 168, 173, 189, 194, 199 |
| abstract_inverted_index.a | 239 |
| abstract_inverted_index.20 | 72 |
| abstract_inverted_index.An | 203 |
| abstract_inverted_index.an | 110 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.at | 71 |
| abstract_inverted_index.be | 232 |
| abstract_inverted_index.i) | 83 |
| abstract_inverted_index.in | 14, 20, 41, 58, 96, 134, 191 |
| abstract_inverted_index.nm | 170, 175, 196, 201 |
| abstract_inverted_index.of | 17, 26, 44, 61, 98, 130, 154, 157, 207, 242 |
| abstract_inverted_index.on | 68 |
| abstract_inverted_index.pH | 89 |
| abstract_inverted_index.to | 5, 31, 34, 53, 82, 126 |
| abstract_inverted_index.(R2 | 188 |
| abstract_inverted_index.660 | 165, 195 |
| abstract_inverted_index.690 | 169, 200 |
| abstract_inverted_index.717 | 174 |
| abstract_inverted_index.ASD | 111 |
| abstract_inverted_index.L-1 | 212 |
| abstract_inverted_index.The | 24, 49, 63, 115, 140, 178, 222 |
| abstract_inverted_index.aim | 25 |
| abstract_inverted_index.and | 12, 90, 101, 124, 171, 197, 209, 218 |
| abstract_inverted_index.are | 3, 225 |
| abstract_inverted_index.can | 231 |
| abstract_inverted_index.for | 137, 144, 151, 215 |
| abstract_inverted_index.ii) | 92 |
| abstract_inverted_index.nm, | 166 |
| abstract_inverted_index.out | 108 |
| abstract_inverted_index.the | 15, 45, 54, 59, 80, 85, 128, 135, 145, 148, 152, 162, 185, 192, 216 |
| abstract_inverted_index.two | 181 |
| abstract_inverted_index.was | 30, 159, 213 |
| abstract_inverted_index.µg | 211 |
| abstract_inverted_index.λ1 | 163, 193 |
| abstract_inverted_index.λ2 | 167, 198 |
| abstract_inverted_index.λ3 | 172 |
| abstract_inverted_index.5.00 | 210 |
| abstract_inverted_index.5.35 | 208 |
| abstract_inverted_index.area | 51 |
| abstract_inverted_index.best | 186 |
| abstract_inverted_index.data | 2, 40, 117, 237 |
| abstract_inverted_index.from | 38, 79, 234 |
| abstract_inverted_index.high | 240 |
| abstract_inverted_index.into | 121 |
| abstract_inverted_index.mean | 205 |
| abstract_inverted_index.situ | 97 |
| abstract_inverted_index.such | 9 |
| abstract_inverted_index.take | 93 |
| abstract_inverted_index.test | 127 |
| abstract_inverted_index.that | 143, 228 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.used | 125 |
| abstract_inverted_index.were | 65, 77, 106, 118 |
| abstract_inverted_index.with | 238 |
| abstract_inverted_index.(R2), | 156 |
| abstract_inverted_index.0.87) | 190 |
| abstract_inverted_index.0.88, | 158 |
| abstract_inverted_index.Orós | 55 |
| abstract_inverted_index.Water | 75 |
| abstract_inverted_index.bands | 183 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.error | 206 |
| abstract_inverted_index.field | 236 |
| abstract_inverted_index.found | 133, 214 |
| abstract_inverted_index.later | 119 |
| abstract_inverted_index.model | 179 |
| abstract_inverted_index.state | 60 |
| abstract_inverted_index.study | 50 |
| abstract_inverted_index.taken | 70 |
| abstract_inverted_index.using | 109, 161 |
| abstract_inverted_index.value | 150 |
| abstract_inverted_index.water | 99 |
| abstract_inverted_index.Hi-Res | 113 |
| abstract_inverted_index.bands. | 177, 202 |
| abstract_inverted_index.degree | 241 |
| abstract_inverted_index.model, | 147 |
| abstract_inverted_index.models | 33, 64, 132, 220, 224 |
| abstract_inverted_index.showed | 142 |
| abstract_inverted_index.study, | 28 |
| abstract_inverted_index.three- | 217 |
| abstract_inverted_index.values | 123 |
| abstract_inverted_index.waters | 43 |
| abstract_inverted_index.Ceará. | 62 |
| abstract_inverted_index.analyse | 84 |
| abstract_inverted_index.aquatic | 22 |
| abstract_inverted_index.carried | 107 |
| abstract_inverted_index.develop | 32 |
| abstract_inverted_index.dynamic | 7 |
| abstract_inverted_index.located | 57 |
| abstract_inverted_index.maximum | 149 |
| abstract_inverted_index.optical | 94 |
| abstract_inverted_index.points. | 74 |
| abstract_inverted_index.region. | 48 |
| abstract_inverted_index.results | 141 |
| abstract_inverted_index.samples | 76 |
| abstract_inverted_index.several | 131 |
| abstract_inverted_index.showing | 227 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Radiance | 104 |
| abstract_inverted_index.absolute | 204 |
| abstract_inverted_index.estimate | 35 |
| abstract_inverted_index.evaluate | 6 |
| abstract_inverted_index.obtained | 160 |
| abstract_inverted_index.sampling | 73 |
| abstract_inverted_index.spectral | 102, 116, 176, 182 |
| abstract_inverted_index.systems. | 23 |
| abstract_inverted_index.two-band | 219 |
| abstract_inverted_index.Brazilian | 46 |
| abstract_inverted_index.accuracy. | 243 |
| abstract_inverted_index.collected | 78 |
| abstract_inverted_index.developed | 66, 223 |
| abstract_inverted_index.employing | 180 |
| abstract_inverted_index.essential | 4 |
| abstract_inverted_index.increases | 13 |
| abstract_inverted_index.presented | 184 |
| abstract_inverted_index.processes | 8 |
| abstract_inverted_index.radiance. | 103 |
| abstract_inverted_index.reliable, | 226 |
| abstract_inverted_index.reservoir | 81 |
| abstract_inverted_index.sediments | 19 |
| abstract_inverted_index.semi-arid | 47 |
| abstract_inverted_index.suspended | 18 |
| abstract_inverted_index.electrical | 87 |
| abstract_inverted_index.estimating | 138 |
| abstract_inverted_index.literature | 136 |
| abstract_inverted_index.quantified | 233 |
| abstract_inverted_index.reservoir, | 56 |
| abstract_inverted_index.therefore, | 29 |
| abstract_inverted_index.three-band | 146 |
| abstract_inverted_index.turbidity; | 91 |
| abstract_inverted_index.coefficient | 153 |
| abstract_inverted_index.continental | 21, 42 |
| abstract_inverted_index.corresponds | 52 |
| abstract_inverted_index.performance | 129, 187 |
| abstract_inverted_index.reflectance | 122 |
| abstract_inverted_index.transformed | 120 |
| abstract_inverted_index.FieldSpec®3 | 112 |
| abstract_inverted_index.measurements | 69, 95, 105 |
| abstract_inverted_index.transparency | 100 |
| abstract_inverted_index.chlorophyll-a | 36, 229 |
| abstract_inverted_index.concentration | 16 |
| abstract_inverted_index.conductivity, | 88 |
| abstract_inverted_index.determination | 155 |
| abstract_inverted_index.respectively. | 221 |
| abstract_inverted_index.Remote-sensing | 1 |
| abstract_inverted_index.chlorophyll-a, | 86 |
| abstract_inverted_index.chlorophyll-a. | 139 |
| abstract_inverted_index.concentrations | 37, 230 |
| abstract_inverted_index.eutrophication | 11 |
| abstract_inverted_index.remote-sensing | 39, 235 |
| abstract_inverted_index.spectroradiometer. | 114 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |