Modelling Construction Sector Output Using Steel and Cement Indicators: A Machine Learning Time Series Approach Article Swipe
Cement and steel play an important role in the construction industry. In this paper, we study the relationship between key steel and cement indicators and construction sector output in India, using the Index of Industrial Production (IIP) for Infrastructure/Construction Goods as a proxy for sector performance. The monthly data such as the steel and cement production, their respective indices and growth rates, the monthly IIP For Infrastructure was collected data from April 2011 to March 2025. The data was cleaned and pre-processed and missing values were handled. Feature engineering was done and since the data was a time series, lag features were introduced to capture temporal dependencies. Bagging and boosting machine learning models were applied to the dataset to model and predict construction sector output. The top five and top ten most important features were identified and used for retraining and hyperparameter tuning. Among these, steel-related features—particularly Steel Index, Steel Growth, and Steel Production—along with lagged IIP values emerged as the strongest predictors of construction sector output. Cement-related variables had marginal influence by comparison. This machine learning approach demonstrates its potential in economic modelling and can assist policymakers and industry stakeholders in making data-driven decisions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.69889/dwrej755
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411213126
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411213126Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.69889/dwrej755Digital Object Identifier
- Title
-
Modelling Construction Sector Output Using Steel and Cement Indicators: A Machine Learning Time Series ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-11Full publication date if available
- Authors
-
S. Ajith Arul DanielList of authors in order
- Landing page
-
https://doi.org/10.69889/dwrej755Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.69889/dwrej755Direct OA link when available
- Concepts
-
Series (stratigraphy), Cement, Time series, Computer science, Industrial engineering, Engineering, Machine learning, Metallurgy, Materials science, Geology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411213126 |
|---|---|
| doi | https://doi.org/10.69889/dwrej755 |
| ids.doi | https://doi.org/10.69889/dwrej755 |
| ids.openalex | https://openalex.org/W4411213126 |
| fwci | 0.0 |
| type | article |
| title | Modelling Construction Sector Output Using Steel and Cement Indicators: A Machine Learning Time Series Approach |
| biblio.issue | 01(S) |
| biblio.volume | 21 |
| biblio.last_page | 111 |
| biblio.first_page | 102 |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.5196999907493591 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| topics[1].id | https://openalex.org/T11006 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.5098999738693237 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | BIM and Construction Integration |
| topics[2].id | https://openalex.org/T10809 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.5097000002861023 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3614 |
| topics[2].subfield.display_name | Radiological and Ultrasound Technology |
| topics[2].display_name | Occupational Health and Safety Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C143724316 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6325082778930664 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[0].display_name | Series (stratigraphy) |
| concepts[1].id | https://openalex.org/C523993062 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5196748375892639 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q45190 |
| concepts[1].display_name | Cement |
| concepts[2].id | https://openalex.org/C151406439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48401471972465515 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[2].display_name | Time series |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.38958871364593506 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C13736549 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34705352783203125 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4489420 |
| concepts[4].display_name | Industrial engineering |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.34384483098983765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2599782943725586 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C191897082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1957833468914032 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[7].display_name | Metallurgy |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18924656510353088 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15800198912620544 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C151730666 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[10].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/series |
| keywords[0].score | 0.6325082778930664 |
| keywords[0].display_name | Series (stratigraphy) |
| keywords[1].id | https://openalex.org/keywords/cement |
| keywords[1].score | 0.5196748375892639 |
| keywords[1].display_name | Cement |
| keywords[2].id | https://openalex.org/keywords/time-series |
| keywords[2].score | 0.48401471972465515 |
| keywords[2].display_name | Time series |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.38958871364593506 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/industrial-engineering |
| keywords[4].score | 0.34705352783203125 |
| keywords[4].display_name | Industrial engineering |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.34384483098983765 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.2599782943725586 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/metallurgy |
| keywords[7].score | 0.1957833468914032 |
| keywords[7].display_name | Metallurgy |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.18924656510353088 |
| keywords[8].display_name | Materials science |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.15800198912620544 |
| keywords[9].display_name | Geology |
| language | en |
| locations[0].id | doi:10.69889/dwrej755 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404663202 |
| locations[0].source.issn | 1505-4683 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1505-4683 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Economic Sciences. |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Economic Sciences |
| locations[0].landing_page_url | https://doi.org/10.69889/dwrej755 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5003263021 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | S. Ajith Arul Daniel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Sunita Daniel, Abin Sam |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.69889/dwrej755 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modelling Construction Sector Output Using Steel and Cement Indicators: A Machine Learning Time Series Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.5196999907493591 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W3183813447, https://openalex.org/W4376621051, https://openalex.org/W3137247076, https://openalex.org/W2497022389, https://openalex.org/W3180591099, https://openalex.org/W2299031885, https://openalex.org/W2119012848, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.69889/dwrej755 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404663202 |
| best_oa_location.source.issn | 1505-4683 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1505-4683 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Economic Sciences. |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Economic Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.69889/dwrej755 |
| primary_location.id | doi:10.69889/dwrej755 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404663202 |
| primary_location.source.issn | 1505-4683 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1505-4683 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Economic Sciences. |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Economic Sciences |
| primary_location.landing_page_url | https://doi.org/10.69889/dwrej755 |
| publication_date | 2025-06-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41, 96 |
| abstract_inverted_index.In | 11 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 40, 50, 159 |
| abstract_inverted_index.by | 172 |
| abstract_inverted_index.in | 7, 28, 181, 191 |
| abstract_inverted_index.of | 33, 163 |
| abstract_inverted_index.to | 73, 103, 115, 118 |
| abstract_inverted_index.we | 14 |
| abstract_inverted_index.For | 65 |
| abstract_inverted_index.IIP | 64, 156 |
| abstract_inverted_index.The | 46, 76, 125 |
| abstract_inverted_index.and | 1, 21, 24, 53, 59, 80, 82, 91, 108, 120, 128, 136, 140, 151, 184, 188 |
| abstract_inverted_index.can | 185 |
| abstract_inverted_index.for | 37, 43, 138 |
| abstract_inverted_index.had | 169 |
| abstract_inverted_index.its | 179 |
| abstract_inverted_index.key | 19 |
| abstract_inverted_index.lag | 99 |
| abstract_inverted_index.ten | 130 |
| abstract_inverted_index.the | 8, 16, 31, 51, 62, 93, 116, 160 |
| abstract_inverted_index.top | 126, 129 |
| abstract_inverted_index.was | 67, 78, 89, 95 |
| abstract_inverted_index.2011 | 72 |
| abstract_inverted_index.This | 174 |
| abstract_inverted_index.data | 48, 69, 77, 94 |
| abstract_inverted_index.done | 90 |
| abstract_inverted_index.five | 127 |
| abstract_inverted_index.from | 70 |
| abstract_inverted_index.most | 131 |
| abstract_inverted_index.play | 3 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.such | 49 |
| abstract_inverted_index.this | 12 |
| abstract_inverted_index.time | 97 |
| abstract_inverted_index.used | 137 |
| abstract_inverted_index.were | 85, 101, 113, 134 |
| abstract_inverted_index.with | 154 |
| abstract_inverted_index.(IIP) | 36 |
| abstract_inverted_index.2025. | 75 |
| abstract_inverted_index.Among | 143 |
| abstract_inverted_index.April | 71 |
| abstract_inverted_index.Goods | 39 |
| abstract_inverted_index.Index | 32 |
| abstract_inverted_index.March | 74 |
| abstract_inverted_index.Steel | 147, 149, 152 |
| abstract_inverted_index.model | 119 |
| abstract_inverted_index.proxy | 42 |
| abstract_inverted_index.since | 92 |
| abstract_inverted_index.steel | 2, 20, 52 |
| abstract_inverted_index.study | 15 |
| abstract_inverted_index.their | 56 |
| abstract_inverted_index.using | 30 |
| abstract_inverted_index.Cement | 0 |
| abstract_inverted_index.Index, | 148 |
| abstract_inverted_index.India, | 29 |
| abstract_inverted_index.assist | 186 |
| abstract_inverted_index.cement | 22, 54 |
| abstract_inverted_index.growth | 60 |
| abstract_inverted_index.lagged | 155 |
| abstract_inverted_index.making | 192 |
| abstract_inverted_index.models | 112 |
| abstract_inverted_index.output | 27 |
| abstract_inverted_index.paper, | 13 |
| abstract_inverted_index.rates, | 61 |
| abstract_inverted_index.sector | 26, 44, 123, 165 |
| abstract_inverted_index.these, | 144 |
| abstract_inverted_index.values | 84, 157 |
| abstract_inverted_index.Bagging | 107 |
| abstract_inverted_index.Feature | 87 |
| abstract_inverted_index.Growth, | 150 |
| abstract_inverted_index.applied | 114 |
| abstract_inverted_index.between | 18 |
| abstract_inverted_index.capture | 104 |
| abstract_inverted_index.cleaned | 79 |
| abstract_inverted_index.dataset | 117 |
| abstract_inverted_index.emerged | 158 |
| abstract_inverted_index.indices | 58 |
| abstract_inverted_index.machine | 110, 175 |
| abstract_inverted_index.missing | 83 |
| abstract_inverted_index.monthly | 47, 63 |
| abstract_inverted_index.output. | 124, 166 |
| abstract_inverted_index.predict | 121 |
| abstract_inverted_index.series, | 98 |
| abstract_inverted_index.tuning. | 142 |
| abstract_inverted_index.approach | 177 |
| abstract_inverted_index.boosting | 109 |
| abstract_inverted_index.economic | 182 |
| abstract_inverted_index.features | 100, 133 |
| abstract_inverted_index.handled. | 86 |
| abstract_inverted_index.industry | 189 |
| abstract_inverted_index.learning | 111, 176 |
| abstract_inverted_index.marginal | 170 |
| abstract_inverted_index.temporal | 105 |
| abstract_inverted_index.collected | 68 |
| abstract_inverted_index.important | 5, 132 |
| abstract_inverted_index.industry. | 10 |
| abstract_inverted_index.influence | 171 |
| abstract_inverted_index.modelling | 183 |
| abstract_inverted_index.potential | 180 |
| abstract_inverted_index.strongest | 161 |
| abstract_inverted_index.variables | 168 |
| abstract_inverted_index.Industrial | 34 |
| abstract_inverted_index.Production | 35 |
| abstract_inverted_index.decisions. | 194 |
| abstract_inverted_index.identified | 135 |
| abstract_inverted_index.indicators | 23 |
| abstract_inverted_index.introduced | 102 |
| abstract_inverted_index.predictors | 162 |
| abstract_inverted_index.respective | 57 |
| abstract_inverted_index.retraining | 139 |
| abstract_inverted_index.comparison. | 173 |
| abstract_inverted_index.data-driven | 193 |
| abstract_inverted_index.engineering | 88 |
| abstract_inverted_index.production, | 55 |
| abstract_inverted_index.construction | 9, 25, 122, 164 |
| abstract_inverted_index.demonstrates | 178 |
| abstract_inverted_index.performance. | 45 |
| abstract_inverted_index.policymakers | 187 |
| abstract_inverted_index.relationship | 17 |
| abstract_inverted_index.stakeholders | 190 |
| abstract_inverted_index.dependencies. | 106 |
| abstract_inverted_index.pre-processed | 81 |
| abstract_inverted_index.steel-related | 145 |
| abstract_inverted_index.Cement-related | 167 |
| abstract_inverted_index.Infrastructure | 66 |
| abstract_inverted_index.hyperparameter | 141 |
| abstract_inverted_index.Production—along | 153 |
| abstract_inverted_index.features—particularly | 146 |
| abstract_inverted_index.Infrastructure/Construction | 38 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5003263021 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.33010012 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |