Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/su13158143
In the last decades, urban climate researchers have highlighted the need for a reliable provision of meteorological data in the local urban context. Several efforts have been made in this direction using Artificial Neural Networks (ANN), demonstrating that they are an accurate alternative to numerical approaches when modelling large time series. However, existing approaches are varied, and it is unclear how much data are needed to train them. This study explores whether the need for training data can be reduced without overly compromising model accuracy, and if model reliability can be increased by selecting the UHI intensity as the main model output instead of air temperature. These two approaches were compared using a common ANN configuration and under different data availability scenarios. Results show that reducing the training dataset from 12 to 9 or even 6 months would still produce reliable results, particularly if the UHI intensity is used. The latter proved to be more effective than the temperature approach under most training scenarios, with an average RMSE improvement of 16.4% when using only 3 months of data. These findings have important implications for urban climate research as they can potentially reduce the duration and cost of field measurement campaigns.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/su13158143
- https://www.mdpi.com/2071-1050/13/15/8143/pdf?version=1626866031
- OA Status
- gold
- Cited By
- 3
- References
- 143
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3185297269
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3185297269Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/su13158143Digital Object Identifier
- Title
-
Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of MadridWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-21Full publication date if available
- Authors
-
Miguel Núñez Peiró, Anna Mavrogianni, P. Symonds, Carmen Sánchez-Guevara Sánchez, Fco. Javier Neila GonzálezList of authors in order
- Landing page
-
https://doi.org/10.3390/su13158143Publisher landing page
- PDF URL
-
https://www.mdpi.com/2071-1050/13/15/8143/pdf?version=1626866031Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2071-1050/13/15/8143/pdf?version=1626866031Direct OA link when available
- Concepts
-
Artificial neural network, Context (archaeology), Training (meteorology), Term (time), Reliability (semiconductor), Computer science, Urban heat island, Field (mathematics), Mean squared error, Machine learning, Environmental science, Meteorology, Statistics, Geography, Mathematics, Archaeology, Physics, Quantum mechanics, Power (physics), Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
143Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3185297269 |
|---|---|
| doi | https://doi.org/10.3390/su13158143 |
| ids.doi | https://doi.org/10.3390/su13158143 |
| ids.mag | 3185297269 |
| ids.openalex | https://openalex.org/W3185297269 |
| fwci | 0.18149981 |
| type | article |
| title | Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid |
| awards[0].id | https://openalex.org/G8271807976 |
| awards[0].funder_id | https://openalex.org/F4320321837 |
| awards[0].funder_award_id | BIA2013-41732-R |
| awards[0].funder_display_name | Ministerio de Economía y Competitividad |
| awards[1].id | https://openalex.org/G6800625029 |
| awards[1].funder_id | https://openalex.org/F4320321764 |
| awards[1].funder_award_id | EST17/00825 |
| awards[1].funder_display_name | Ministerio de Educación, Cultura y Deporte |
| awards[2].id | https://openalex.org/G4837788976 |
| awards[2].funder_id | https://openalex.org/F4320321764 |
| awards[2].funder_award_id | FPU15/05052 |
| awards[2].funder_display_name | Ministerio de Educación, Cultura y Deporte |
| biblio.issue | 15 |
| biblio.volume | 13 |
| biblio.last_page | 8143 |
| biblio.first_page | 8143 |
| grants[0].funder | https://openalex.org/F4320321764 |
| grants[0].award_id | EST17/00825 |
| grants[0].funder_display_name | Ministerio de Educación, Cultura y Deporte |
| grants[1].funder | https://openalex.org/F4320321764 |
| grants[1].award_id | FPU15/05052 |
| grants[1].funder_display_name | Ministerio de Educación, Cultura y Deporte |
| grants[2].funder | https://openalex.org/F4320321837 |
| grants[2].award_id | BIA2013-41732-R |
| grants[2].funder_display_name | Ministerio de Economía y Competitividad |
| topics[0].id | https://openalex.org/T10766 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Urban Heat Island Mitigation |
| topics[1].id | https://openalex.org/T10121 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Building Energy and Comfort Optimization |
| topics[2].id | https://openalex.org/T11692 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9890000224113464 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3616 |
| topics[2].subfield.display_name | Speech and Hearing |
| topics[2].display_name | Noise Effects and Management |
| funders[0].id | https://openalex.org/F4320321764 |
| funders[0].ror | https://ror.org/03nc27g21 |
| funders[0].display_name | Ministerio de Educación, Cultura y Deporte |
| funders[1].id | https://openalex.org/F4320321837 |
| funders[1].ror | https://ror.org/034900433 |
| funders[1].display_name | Ministerio de Economía y Competitividad |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7021239399909973 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7004441618919373 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C2777211547 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6933265328407288 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[2].display_name | Training (meteorology) |
| concepts[3].id | https://openalex.org/C61797465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6691539287567139 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[3].display_name | Term (time) |
| concepts[4].id | https://openalex.org/C43214815 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6089209318161011 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[4].display_name | Reliability (semiconductor) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5535809397697449 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C54005896 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5247970819473267 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q215712 |
| concepts[6].display_name | Urban heat island |
| concepts[7].id | https://openalex.org/C9652623 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5066171884536743 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[7].display_name | Field (mathematics) |
| concepts[8].id | https://openalex.org/C139945424 |
| concepts[8].level | 2 |
| concepts[8].score | 0.505638599395752 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[8].display_name | Mean squared error |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36608344316482544 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C39432304 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3450658321380615 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[10].display_name | Environmental science |
| concepts[11].id | https://openalex.org/C153294291 |
| concepts[11].level | 1 |
| concepts[11].score | 0.28199321031570435 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[11].display_name | Meteorology |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.22200441360473633 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1630314588546753 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13447847962379456 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C166957645 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[15].display_name | Archaeology |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C163258240 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[18].display_name | Power (physics) |
| concepts[19].id | https://openalex.org/C202444582 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[19].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7021239399909973 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.7004441618919373 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/training |
| keywords[2].score | 0.6933265328407288 |
| keywords[2].display_name | Training (meteorology) |
| keywords[3].id | https://openalex.org/keywords/term |
| keywords[3].score | 0.6691539287567139 |
| keywords[3].display_name | Term (time) |
| keywords[4].id | https://openalex.org/keywords/reliability |
| keywords[4].score | 0.6089209318161011 |
| keywords[4].display_name | Reliability (semiconductor) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5535809397697449 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/urban-heat-island |
| keywords[6].score | 0.5247970819473267 |
| keywords[6].display_name | Urban heat island |
| keywords[7].id | https://openalex.org/keywords/field |
| keywords[7].score | 0.5066171884536743 |
| keywords[7].display_name | Field (mathematics) |
| keywords[8].id | https://openalex.org/keywords/mean-squared-error |
| keywords[8].score | 0.505638599395752 |
| keywords[8].display_name | Mean squared error |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.36608344316482544 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/environmental-science |
| keywords[10].score | 0.3450658321380615 |
| keywords[10].display_name | Environmental science |
| keywords[11].id | https://openalex.org/keywords/meteorology |
| keywords[11].score | 0.28199321031570435 |
| keywords[11].display_name | Meteorology |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.22200441360473633 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.1630314588546753 |
| keywords[13].display_name | Geography |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.13447847962379456 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/su13158143 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S10134376 |
| locations[0].source.issn | 2071-1050 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2071-1050 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Sustainability |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2071-1050/13/15/8143/pdf?version=1626866031 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sustainability |
| locations[0].landing_page_url | https://doi.org/10.3390/su13158143 |
| locations[1].id | pmh:oai:mdpi.com:/2071-1050/13/15/8143/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sustainability; Volume 13; Issue 15; Pages: 8143 |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/su13158143 |
| locations[2].id | pmh:oai:doaj.org/article:109f1dcec37f414da17e5677bdc42f99 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sustainability, Vol 13, Iss 8143, p 8143 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/109f1dcec37f414da17e5677bdc42f99 |
| locations[3].id | pmh:oai:eprints.ucl.ac.uk.OAI2:10132679 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306400024 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | UCL Discovery (University College London) |
| locations[3].source.host_organization | https://openalex.org/I45129253 |
| locations[3].source.host_organization_name | University College London |
| locations[3].source.host_organization_lineage | https://openalex.org/I45129253 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sustainability , 13 (15) , Article 8143. (2021) |
| locations[3].landing_page_url | https://discovery.ucl.ac.uk/id/eprint/10132679/ |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5010377110 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3895-6791 |
| authorships[0].author.display_name | Miguel Núñez Peiró |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Architecture, Universidad Politécnica de Madrid, Avda. Juan de Herrera 4, 28040 Madrid, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I88060688 |
| authorships[0].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Miguel Núñez-Peiró |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Architecture, Universidad Politécnica de Madrid, Avda. Juan de Herrera 4, 28040 Madrid, Spain |
| authorships[1].author.id | https://openalex.org/A5067641244 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5104-1238 |
| authorships[1].author.display_name | Anna Mavrogianni |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Environmental Design and Engineering, University College London, Central House, 14 Woburn Place, London WC1H 0NN, UK |
| authorships[1].institutions[0].id | https://openalex.org/I45129253 |
| authorships[1].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anna Mavrogianni |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Environmental Design and Engineering, University College London, Central House, 14 Woburn Place, London WC1H 0NN, UK |
| authorships[2].author.id | https://openalex.org/A5102028004 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6290-5417 |
| authorships[2].author.display_name | P. Symonds |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Environmental Design and Engineering, University College London, Central House, 14 Woburn Place, London WC1H 0NN, UK |
| authorships[2].institutions[0].id | https://openalex.org/I45129253 |
| authorships[2].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Phil Symonds |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Environmental Design and Engineering, University College London, Central House, 14 Woburn Place, London WC1H 0NN, UK |
| authorships[3].author.id | https://openalex.org/A5033313531 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9612-7633 |
| authorships[3].author.display_name | Carmen Sánchez-Guevara Sánchez |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Architecture, Universidad Politécnica de Madrid, Avda. Juan de Herrera 4, 28040 Madrid, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I88060688 |
| authorships[3].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Carmen Sánchez-Guevara Sánchez |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Architecture, Universidad Politécnica de Madrid, Avda. Juan de Herrera 4, 28040 Madrid, Spain |
| authorships[4].author.id | https://openalex.org/A5088613326 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2645-8656 |
| authorships[4].author.display_name | Fco. Javier Neila González |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Architecture, Universidad Politécnica de Madrid, Avda. Juan de Herrera 4, 28040 Madrid, Spain |
| authorships[4].institutions[0].id | https://openalex.org/I88060688 |
| authorships[4].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | F. Javier Neila González |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Architecture, Universidad Politécnica de Madrid, Avda. Juan de Herrera 4, 28040 Madrid, Spain |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2071-1050/13/15/8143/pdf?version=1626866031 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-08-02T00:00:00 |
| display_name | Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10766 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Urban Heat Island Mitigation |
| related_works | https://openalex.org/W2547006382, https://openalex.org/W3017730864, https://openalex.org/W230091440, https://openalex.org/W2003943341, https://openalex.org/W2193749736, https://openalex.org/W2385102367, https://openalex.org/W2389058308, https://openalex.org/W2350120827, https://openalex.org/W2471641792, https://openalex.org/W2385082596 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/su13158143 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S10134376 |
| best_oa_location.source.issn | 2071-1050 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2071-1050 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Sustainability |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2071-1050/13/15/8143/pdf?version=1626866031 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sustainability |
| best_oa_location.landing_page_url | https://doi.org/10.3390/su13158143 |
| primary_location.id | doi:10.3390/su13158143 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S10134376 |
| primary_location.source.issn | 2071-1050 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2071-1050 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Sustainability |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2071-1050/13/15/8143/pdf?version=1626866031 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sustainability |
| primary_location.landing_page_url | https://doi.org/10.3390/su13158143 |
| publication_date | 2021-07-21 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2795308205, https://openalex.org/W1993121372, https://openalex.org/W2803761529, https://openalex.org/W3161892941, https://openalex.org/W2915179281, https://openalex.org/W3164760838, https://openalex.org/W2097467169, https://openalex.org/W2119746410, https://openalex.org/W2082154841, https://openalex.org/W2916732471, https://openalex.org/W3023057852, https://openalex.org/W2195202177, https://openalex.org/W1979570769, https://openalex.org/W3001633317, https://openalex.org/W3014739278, https://openalex.org/W2886793503, https://openalex.org/W918712335, https://openalex.org/W2623713843, https://openalex.org/W2978308610, https://openalex.org/W2104922698, https://openalex.org/W2970775799, https://openalex.org/W2798063057, https://openalex.org/W1517195678, https://openalex.org/W2000508590, https://openalex.org/W2138264285, https://openalex.org/W1986615132, https://openalex.org/W3002165885, https://openalex.org/W2592776641, https://openalex.org/W3117582100, https://openalex.org/W3125753494, https://openalex.org/W2041810266, https://openalex.org/W2872546194, https://openalex.org/W2796762594, https://openalex.org/W2999953089, https://openalex.org/W2153190925, https://openalex.org/W2089701274, https://openalex.org/W2583977467, https://openalex.org/W2161448838, https://openalex.org/W2757079192, https://openalex.org/W2978741516, https://openalex.org/W2044158079, https://openalex.org/W2560347871, https://openalex.org/W6795044266, https://openalex.org/W2769957474, https://openalex.org/W2612715286, https://openalex.org/W2999839724, https://openalex.org/W1518531469, https://openalex.org/W2106814586, https://openalex.org/W1986011006, https://openalex.org/W2976159462, https://openalex.org/W2907470085, https://openalex.org/W2945519905, https://openalex.org/W2910929041, https://openalex.org/W2487460696, https://openalex.org/W3082149832, https://openalex.org/W2753066460, https://openalex.org/W2081629992, https://openalex.org/W3030862753, https://openalex.org/W2784419607, https://openalex.org/W2954045691, https://openalex.org/W3140164324, https://openalex.org/W2156644521, https://openalex.org/W3158216111, https://openalex.org/W2129080587, https://openalex.org/W3043392635, https://openalex.org/W3014089499, https://openalex.org/W2000716539, https://openalex.org/W2174002360, https://openalex.org/W2019202657, https://openalex.org/W2012811501, https://openalex.org/W2003752338, https://openalex.org/W1988446509, https://openalex.org/W2089865848, https://openalex.org/W2922150698, https://openalex.org/W3034174159, https://openalex.org/W772924519, https://openalex.org/W2534052189, https://openalex.org/W2045968275, https://openalex.org/W2033057948, https://openalex.org/W2109610972, https://openalex.org/W4300657415, https://openalex.org/W1250482158, https://openalex.org/W7700111, https://openalex.org/W2126943165, https://openalex.org/W2782438057, https://openalex.org/W3120887079, https://openalex.org/W2971724044, https://openalex.org/W2061367935, https://openalex.org/W2597256491, https://openalex.org/W2033782096, https://openalex.org/W2069850258, https://openalex.org/W1966687859, https://openalex.org/W3121602933, https://openalex.org/W2030737358, https://openalex.org/W2899474490, https://openalex.org/W2509201495, https://openalex.org/W2521538096, https://openalex.org/W2469290786, https://openalex.org/W4245972137, https://openalex.org/W2002705566, https://openalex.org/W2755552418, https://openalex.org/W2938174220, https://openalex.org/W3097313891, https://openalex.org/W2106100979, https://openalex.org/W1966447062, https://openalex.org/W6713134421, https://openalex.org/W2158585626, https://openalex.org/W1998384129, https://openalex.org/W3042542258, https://openalex.org/W2767199037, https://openalex.org/W1967427848, https://openalex.org/W3166316253, https://openalex.org/W3087098381, https://openalex.org/W3046810523, https://openalex.org/W3131249002, https://openalex.org/W3157203066, https://openalex.org/W2263909456, https://openalex.org/W2892289649, https://openalex.org/W2947740714, https://openalex.org/W3006617224, https://openalex.org/W3134620799, https://openalex.org/W2137983211, https://openalex.org/W2153346346, https://openalex.org/W2011227258, https://openalex.org/W2970658101, https://openalex.org/W2294467502, https://openalex.org/W6818569213, https://openalex.org/W1976355266, https://openalex.org/W1974493897, https://openalex.org/W2774851356, https://openalex.org/W1928027805, https://openalex.org/W2889581973, https://openalex.org/W1951070732, https://openalex.org/W1934130852, https://openalex.org/W3146803896, https://openalex.org/W2057327562, https://openalex.org/W3158115389, https://openalex.org/W2953384591, https://openalex.org/W3133556430, https://openalex.org/W3185031481, https://openalex.org/W1600172774, https://openalex.org/W4236679173, https://openalex.org/W10344225 |
| referenced_works_count | 143 |
| abstract_inverted_index.3 | 174 |
| abstract_inverted_index.6 | 135 |
| abstract_inverted_index.9 | 132 |
| abstract_inverted_index.a | 12, 112 |
| abstract_inverted_index.12 | 130 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 40, 165 |
| abstract_inverted_index.as | 97, 187 |
| abstract_inverted_index.be | 78, 90, 153 |
| abstract_inverted_index.by | 92 |
| abstract_inverted_index.if | 86, 143 |
| abstract_inverted_index.in | 18, 28 |
| abstract_inverted_index.is | 58, 147 |
| abstract_inverted_index.it | 57 |
| abstract_inverted_index.of | 15, 103, 169, 176, 196 |
| abstract_inverted_index.or | 133 |
| abstract_inverted_index.to | 43, 65, 131, 152 |
| abstract_inverted_index.ANN | 114 |
| abstract_inverted_index.The | 149 |
| abstract_inverted_index.UHI | 95, 145 |
| abstract_inverted_index.air | 104 |
| abstract_inverted_index.and | 56, 85, 116, 194 |
| abstract_inverted_index.are | 39, 54, 63 |
| abstract_inverted_index.can | 77, 89, 189 |
| abstract_inverted_index.for | 11, 74, 183 |
| abstract_inverted_index.how | 60 |
| abstract_inverted_index.the | 1, 9, 19, 72, 94, 98, 126, 144, 157, 192 |
| abstract_inverted_index.two | 107 |
| abstract_inverted_index.RMSE | 167 |
| abstract_inverted_index.This | 68 |
| abstract_inverted_index.been | 26 |
| abstract_inverted_index.cost | 195 |
| abstract_inverted_index.data | 17, 62, 76, 119 |
| abstract_inverted_index.even | 134 |
| abstract_inverted_index.from | 129 |
| abstract_inverted_index.have | 7, 25, 180 |
| abstract_inverted_index.last | 2 |
| abstract_inverted_index.made | 27 |
| abstract_inverted_index.main | 99 |
| abstract_inverted_index.more | 154 |
| abstract_inverted_index.most | 161 |
| abstract_inverted_index.much | 61 |
| abstract_inverted_index.need | 10, 73 |
| abstract_inverted_index.only | 173 |
| abstract_inverted_index.show | 123 |
| abstract_inverted_index.than | 156 |
| abstract_inverted_index.that | 37, 124 |
| abstract_inverted_index.they | 38, 188 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.time | 49 |
| abstract_inverted_index.were | 109 |
| abstract_inverted_index.when | 46, 171 |
| abstract_inverted_index.with | 164 |
| abstract_inverted_index.16.4% | 170 |
| abstract_inverted_index.These | 106, 178 |
| abstract_inverted_index.data. | 177 |
| abstract_inverted_index.field | 197 |
| abstract_inverted_index.large | 48 |
| abstract_inverted_index.local | 20 |
| abstract_inverted_index.model | 83, 87, 100 |
| abstract_inverted_index.still | 138 |
| abstract_inverted_index.study | 69 |
| abstract_inverted_index.them. | 67 |
| abstract_inverted_index.train | 66 |
| abstract_inverted_index.under | 117, 160 |
| abstract_inverted_index.urban | 4, 21, 184 |
| abstract_inverted_index.used. | 148 |
| abstract_inverted_index.using | 31, 111, 172 |
| abstract_inverted_index.would | 137 |
| abstract_inverted_index.(ANN), | 35 |
| abstract_inverted_index.Neural | 33 |
| abstract_inverted_index.common | 113 |
| abstract_inverted_index.latter | 150 |
| abstract_inverted_index.months | 136, 175 |
| abstract_inverted_index.needed | 64 |
| abstract_inverted_index.output | 101 |
| abstract_inverted_index.overly | 81 |
| abstract_inverted_index.proved | 151 |
| abstract_inverted_index.reduce | 191 |
| abstract_inverted_index.Results | 122 |
| abstract_inverted_index.Several | 23 |
| abstract_inverted_index.average | 166 |
| abstract_inverted_index.climate | 5, 185 |
| abstract_inverted_index.dataset | 128 |
| abstract_inverted_index.efforts | 24 |
| abstract_inverted_index.instead | 102 |
| abstract_inverted_index.produce | 139 |
| abstract_inverted_index.reduced | 79 |
| abstract_inverted_index.series. | 50 |
| abstract_inverted_index.unclear | 59 |
| abstract_inverted_index.varied, | 55 |
| abstract_inverted_index.whether | 71 |
| abstract_inverted_index.without | 80 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.Networks | 34 |
| abstract_inverted_index.accurate | 41 |
| abstract_inverted_index.approach | 159 |
| abstract_inverted_index.compared | 110 |
| abstract_inverted_index.context. | 22 |
| abstract_inverted_index.decades, | 3 |
| abstract_inverted_index.duration | 193 |
| abstract_inverted_index.existing | 52 |
| abstract_inverted_index.explores | 70 |
| abstract_inverted_index.findings | 179 |
| abstract_inverted_index.reducing | 125 |
| abstract_inverted_index.reliable | 13, 140 |
| abstract_inverted_index.research | 186 |
| abstract_inverted_index.results, | 141 |
| abstract_inverted_index.training | 75, 127, 162 |
| abstract_inverted_index.accuracy, | 84 |
| abstract_inverted_index.different | 118 |
| abstract_inverted_index.direction | 30 |
| abstract_inverted_index.effective | 155 |
| abstract_inverted_index.important | 181 |
| abstract_inverted_index.increased | 91 |
| abstract_inverted_index.intensity | 96, 146 |
| abstract_inverted_index.modelling | 47 |
| abstract_inverted_index.numerical | 44 |
| abstract_inverted_index.provision | 14 |
| abstract_inverted_index.selecting | 93 |
| abstract_inverted_index.Artificial | 32 |
| abstract_inverted_index.approaches | 45, 53, 108 |
| abstract_inverted_index.campaigns. | 199 |
| abstract_inverted_index.scenarios, | 163 |
| abstract_inverted_index.scenarios. | 121 |
| abstract_inverted_index.alternative | 42 |
| abstract_inverted_index.highlighted | 8 |
| abstract_inverted_index.improvement | 168 |
| abstract_inverted_index.measurement | 198 |
| abstract_inverted_index.potentially | 190 |
| abstract_inverted_index.reliability | 88 |
| abstract_inverted_index.researchers | 6 |
| abstract_inverted_index.temperature | 158 |
| abstract_inverted_index.availability | 120 |
| abstract_inverted_index.compromising | 82 |
| abstract_inverted_index.implications | 182 |
| abstract_inverted_index.particularly | 142 |
| abstract_inverted_index.temperature. | 105 |
| abstract_inverted_index.configuration | 115 |
| abstract_inverted_index.demonstrating | 36 |
| abstract_inverted_index.meteorological | 16 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5010377110 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I88060688 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.46510257 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |