Modelling multiplex testing for outbreak Control Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.17239
During the SARS-CoV-2 pandemic, polymerase chain reaction (PCR) and lateral flow device (LFD) tests were frequently deployed to detect the presence of SARS-CoV-2. Many of these tests were singleplex, and only tested for the presence of a single pathogen. Multiplex tests can test for the presence of several pathogens using only a single swab, which can allow for: surveillance of more pathogens, targeting of antiviral interventions, a reduced burden of testing, and lower costs. Test sensitivity however, particularly in LFD tests, is highly conditional on the viral concentration dynamics of individuals. To inform the use of multiplex testing in outbreak detection it is therefore necessary to investigate the interactions between outbreak detection strategies and the differing viral concentration trajectories of key pathogens. Viral concentration trajectories are estimated for SARS-CoV-2, and Influenza A/B. Testing strategies for the first five symptomatic cases in an outbreak are then simulated and used to evaluate key performance indicators. Strategies that use a combination of multiplex LFD and PCR tests achieve; high levels of detection, detect outbreaks rapidly, and have the lowest burden of testing across multiple pathogens. Influenza B was estimated to have lower rates of detection due to its modelled viral concentration dynamics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.17239
- https://arxiv.org/pdf/2408.17239
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403524690
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403524690Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.17239Digital Object Identifier
- Title
-
Modelling multiplex testing for outbreak ControlWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-30Full publication date if available
- Authors
-
Martyn Fyles, Christopher E. Overton, Tom Ward, Emma Bennett, Tom Fowler, Ian HallList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.17239Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.17239Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.17239Direct OA link when available
- Concepts
-
Multiplex, Outbreak, Control (management), Computer science, Biology, Virology, Artificial intelligence, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403524690 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.17239 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.17239 |
| ids.openalex | https://openalex.org/W4403524690 |
| fwci | |
| type | preprint |
| title | Modelling multiplex testing for outbreak Control |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11235 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9383999705314636 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods in Clinical Trials |
| topics[1].id | https://openalex.org/T11754 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9327999949455261 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2725 |
| topics[1].subfield.display_name | Infectious Diseases |
| topics[1].display_name | SARS-CoV-2 detection and testing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781188995 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7458028197288513 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6934982 |
| concepts[0].display_name | Multiplex |
| concepts[1].id | https://openalex.org/C116675565 |
| concepts[1].level | 2 |
| concepts[1].score | 0.664995551109314 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[1].display_name | Outbreak |
| concepts[2].id | https://openalex.org/C2775924081 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4394409954547882 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[2].display_name | Control (management) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3591865599155426 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.22664201259613037 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C159047783 |
| concepts[5].level | 1 |
| concepts[5].score | 0.21397116780281067 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[5].display_name | Virology |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1322462558746338 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C54355233 |
| concepts[7].level | 1 |
| concepts[7].score | 0.10198354721069336 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[7].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/multiplex |
| keywords[0].score | 0.7458028197288513 |
| keywords[0].display_name | Multiplex |
| keywords[1].id | https://openalex.org/keywords/outbreak |
| keywords[1].score | 0.664995551109314 |
| keywords[1].display_name | Outbreak |
| keywords[2].id | https://openalex.org/keywords/control |
| keywords[2].score | 0.4394409954547882 |
| keywords[2].display_name | Control (management) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3591865599155426 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.22664201259613037 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/virology |
| keywords[5].score | 0.21397116780281067 |
| keywords[5].display_name | Virology |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.1322462558746338 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/genetics |
| keywords[7].score | 0.10198354721069336 |
| keywords[7].display_name | Genetics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.17239 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.17239 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.17239 |
| locations[1].id | doi:10.48550/arxiv.2408.17239 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.17239 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5063761650 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5582-9201 |
| authorships[0].author.display_name | Martyn Fyles |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fyles, Martyn |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059407270 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8433-4010 |
| authorships[1].author.display_name | Christopher E. Overton |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Overton, Christopher E. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5018278249 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tom Ward |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ward, Tom |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5042685467 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7188-4315 |
| authorships[3].author.display_name | Emma Bennett |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bennett, Emma |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055393004 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7258-2279 |
| authorships[4].author.display_name | Tom Fowler |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fowler, Tom |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5107958721 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ian Hall |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hall, Ian |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.17239 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modelling multiplex testing for outbreak Control |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11235 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9383999705314636 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods in Clinical Trials |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2373635223, https://openalex.org/W2412355096, https://openalex.org/W1990012352, https://openalex.org/W2431766951, https://openalex.org/W4385969441, https://openalex.org/W127458931, https://openalex.org/W2362266265 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.17239 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.17239 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.17239 |
| primary_location.id | pmh:oai:arXiv.org:2408.17239 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.17239 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.17239 |
| publication_date | 2024-08-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.B | 183 |
| abstract_inverted_index.a | 36, 51, 66, 156 |
| abstract_inverted_index.To | 91 |
| abstract_inverted_index.an | 141 |
| abstract_inverted_index.in | 78, 98, 140 |
| abstract_inverted_index.is | 81, 102 |
| abstract_inverted_index.it | 101 |
| abstract_inverted_index.of | 21, 24, 35, 46, 59, 63, 69, 89, 95, 119, 158, 167, 177, 190 |
| abstract_inverted_index.on | 84 |
| abstract_inverted_index.to | 17, 105, 148, 186, 193 |
| abstract_inverted_index.LFD | 79, 160 |
| abstract_inverted_index.PCR | 162 |
| abstract_inverted_index.and | 8, 29, 71, 113, 129, 146, 161, 172 |
| abstract_inverted_index.are | 125, 143 |
| abstract_inverted_index.can | 41, 55 |
| abstract_inverted_index.due | 192 |
| abstract_inverted_index.for | 32, 43, 127, 134 |
| abstract_inverted_index.its | 194 |
| abstract_inverted_index.key | 120, 150 |
| abstract_inverted_index.the | 1, 19, 33, 44, 85, 93, 107, 114, 135, 174 |
| abstract_inverted_index.use | 94, 155 |
| abstract_inverted_index.was | 184 |
| abstract_inverted_index.A/B. | 131 |
| abstract_inverted_index.Many | 23 |
| abstract_inverted_index.Test | 74 |
| abstract_inverted_index.five | 137 |
| abstract_inverted_index.flow | 10 |
| abstract_inverted_index.for: | 57 |
| abstract_inverted_index.have | 173, 187 |
| abstract_inverted_index.high | 165 |
| abstract_inverted_index.more | 60 |
| abstract_inverted_index.only | 30, 50 |
| abstract_inverted_index.test | 42 |
| abstract_inverted_index.that | 154 |
| abstract_inverted_index.then | 144 |
| abstract_inverted_index.used | 147 |
| abstract_inverted_index.were | 14, 27 |
| abstract_inverted_index.(LFD) | 12 |
| abstract_inverted_index.(PCR) | 7 |
| abstract_inverted_index.Viral | 122 |
| abstract_inverted_index.allow | 56 |
| abstract_inverted_index.cases | 139 |
| abstract_inverted_index.chain | 5 |
| abstract_inverted_index.first | 136 |
| abstract_inverted_index.lower | 72, 188 |
| abstract_inverted_index.rates | 189 |
| abstract_inverted_index.swab, | 53 |
| abstract_inverted_index.tests | 13, 26, 40, 163 |
| abstract_inverted_index.these | 25 |
| abstract_inverted_index.using | 49 |
| abstract_inverted_index.viral | 86, 116, 196 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.During | 0 |
| abstract_inverted_index.across | 179 |
| abstract_inverted_index.burden | 68, 176 |
| abstract_inverted_index.costs. | 73 |
| abstract_inverted_index.detect | 18, 169 |
| abstract_inverted_index.device | 11 |
| abstract_inverted_index.highly | 82 |
| abstract_inverted_index.inform | 92 |
| abstract_inverted_index.levels | 166 |
| abstract_inverted_index.lowest | 175 |
| abstract_inverted_index.single | 37, 52 |
| abstract_inverted_index.tested | 31 |
| abstract_inverted_index.tests, | 80 |
| abstract_inverted_index.Testing | 132 |
| abstract_inverted_index.between | 109 |
| abstract_inverted_index.lateral | 9 |
| abstract_inverted_index.reduced | 67 |
| abstract_inverted_index.several | 47 |
| abstract_inverted_index.testing | 97, 178 |
| abstract_inverted_index.achieve; | 164 |
| abstract_inverted_index.deployed | 16 |
| abstract_inverted_index.dynamics | 88 |
| abstract_inverted_index.evaluate | 149 |
| abstract_inverted_index.however, | 76 |
| abstract_inverted_index.modelled | 195 |
| abstract_inverted_index.multiple | 180 |
| abstract_inverted_index.outbreak | 99, 110, 142 |
| abstract_inverted_index.presence | 20, 34, 45 |
| abstract_inverted_index.rapidly, | 171 |
| abstract_inverted_index.reaction | 6 |
| abstract_inverted_index.testing, | 70 |
| abstract_inverted_index.Influenza | 130, 182 |
| abstract_inverted_index.Multiplex | 39 |
| abstract_inverted_index.antiviral | 64 |
| abstract_inverted_index.detection | 100, 111, 191 |
| abstract_inverted_index.differing | 115 |
| abstract_inverted_index.dynamics. | 198 |
| abstract_inverted_index.estimated | 126, 185 |
| abstract_inverted_index.multiplex | 96, 159 |
| abstract_inverted_index.necessary | 104 |
| abstract_inverted_index.outbreaks | 170 |
| abstract_inverted_index.pandemic, | 3 |
| abstract_inverted_index.pathogen. | 38 |
| abstract_inverted_index.pathogens | 48 |
| abstract_inverted_index.simulated | 145 |
| abstract_inverted_index.targeting | 62 |
| abstract_inverted_index.therefore | 103 |
| abstract_inverted_index.SARS-CoV-2 | 2 |
| abstract_inverted_index.Strategies | 153 |
| abstract_inverted_index.detection, | 168 |
| abstract_inverted_index.frequently | 15 |
| abstract_inverted_index.pathogens, | 61 |
| abstract_inverted_index.pathogens. | 121, 181 |
| abstract_inverted_index.polymerase | 4 |
| abstract_inverted_index.strategies | 112, 133 |
| abstract_inverted_index.SARS-CoV-2, | 128 |
| abstract_inverted_index.SARS-CoV-2. | 22 |
| abstract_inverted_index.combination | 157 |
| abstract_inverted_index.conditional | 83 |
| abstract_inverted_index.indicators. | 152 |
| abstract_inverted_index.investigate | 106 |
| abstract_inverted_index.performance | 151 |
| abstract_inverted_index.sensitivity | 75 |
| abstract_inverted_index.singleplex, | 28 |
| abstract_inverted_index.symptomatic | 138 |
| abstract_inverted_index.individuals. | 90 |
| abstract_inverted_index.interactions | 108 |
| abstract_inverted_index.particularly | 77 |
| abstract_inverted_index.surveillance | 58 |
| abstract_inverted_index.trajectories | 118, 124 |
| abstract_inverted_index.concentration | 87, 117, 123, 197 |
| abstract_inverted_index.interventions, | 65 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |