Modelling the spread of two successive SIR epidemics on a configuration model network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.20889
We present a stochastic model for two successive SIR (Susceptible, Infectious, Recovered) epidemics in the same network structured population. Individuals infected during the first epidemic might have (partial) immunity for the second one. The first epidemic is analysed through a bond percolation model, while the second epidemic is approximated by a three-type branching process in which the types of individuals depend on their position in the percolation clusters used for the first epidemic. This branching process approximation enables us to calculate, in the large population limit and conditional upon a large outbreak in the first epidemic, a threshold parameter and the probability of a large outbreak for the second epidemic. A second branching process approximation enables us to calculate the fraction of the population that are infected by such a second large outbreak. We illustrate our results through some specific cases which have appeared previously in the literature and show that our asymptotic results give good approximations for finite populations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.20889
- https://arxiv.org/pdf/2410.20889
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404314648
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404314648Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.20889Digital Object Identifier
- Title
-
Modelling the spread of two successive SIR epidemics on a configuration model networkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-28Full publication date if available
- Authors
-
Frank Ball, Abid Ali Lashari, David Sirl, Pieter TrapmanList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.20889Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.20889Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.20889Direct OA link when available
- Concepts
-
Epidemic model, Computer science, Network model, Geography, Demography, Artificial intelligence, Sociology, PopulationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404314648 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.20889 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.20889 |
| ids.openalex | https://openalex.org/W4404314648 |
| fwci | |
| type | preprint |
| title | Modelling the spread of two successive SIR epidemics on a configuration model network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10410 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.5307000279426575 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | COVID-19 epidemiological studies |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.5241000056266785 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11135 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.4684000015258789 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Virology and Viral Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C1627819 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5715524554252625 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2572354 |
| concepts[0].display_name | Epidemic model |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4642869234085083 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C104122410 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4389657974243164 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1416406 |
| concepts[2].display_name | Network model |
| concepts[3].id | https://openalex.org/C205649164 |
| concepts[3].level | 0 |
| concepts[3].score | 0.35161781311035156 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[3].display_name | Geography |
| concepts[4].id | https://openalex.org/C149923435 |
| concepts[4].level | 1 |
| concepts[4].score | 0.16145434975624084 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[4].display_name | Demography |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.123180091381073 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C144024400 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0900924801826477 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[6].display_name | Sociology |
| concepts[7].id | https://openalex.org/C2908647359 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[7].display_name | Population |
| keywords[0].id | https://openalex.org/keywords/epidemic-model |
| keywords[0].score | 0.5715524554252625 |
| keywords[0].display_name | Epidemic model |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4642869234085083 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/network-model |
| keywords[2].score | 0.4389657974243164 |
| keywords[2].display_name | Network model |
| keywords[3].id | https://openalex.org/keywords/geography |
| keywords[3].score | 0.35161781311035156 |
| keywords[3].display_name | Geography |
| keywords[4].id | https://openalex.org/keywords/demography |
| keywords[4].score | 0.16145434975624084 |
| keywords[4].display_name | Demography |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.123180091381073 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/sociology |
| keywords[6].score | 0.0900924801826477 |
| keywords[6].display_name | Sociology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.20889 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.20889 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.20889 |
| locations[1].id | doi:10.48550/arxiv.2410.20889 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.20889 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003152026 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5599-2903 |
| authorships[0].author.display_name | Frank Ball |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ball, Frank |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055495622 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Abid Ali Lashari |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lashari, Abid Ali |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5045892385 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2639-1666 |
| authorships[2].author.display_name | David Sirl |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sirl, David |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065538419 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0569-1659 |
| authorships[3].author.display_name | Pieter Trapman |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Trapman, Pieter |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.20889 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modelling the spread of two successive SIR epidemics on a configuration model network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10410 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.5307000279426575 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | COVID-19 epidemiological studies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4234440745, https://openalex.org/W2401511646, https://openalex.org/W3154790348, https://openalex.org/W4315489122 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.20889 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.20889 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.20889 |
| primary_location.id | pmh:oai:arXiv.org:2410.20889 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.20889 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.20889 |
| publication_date | 2024-10-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 110 |
| abstract_inverted_index.a | 2, 39, 50, 89, 96, 103, 129 |
| abstract_inverted_index.We | 0, 133 |
| abstract_inverted_index.by | 49, 127 |
| abstract_inverted_index.in | 13, 54, 64, 81, 92, 145 |
| abstract_inverted_index.is | 36, 47 |
| abstract_inverted_index.of | 58, 102, 121 |
| abstract_inverted_index.on | 61 |
| abstract_inverted_index.to | 79, 117 |
| abstract_inverted_index.us | 78, 116 |
| abstract_inverted_index.SIR | 8 |
| abstract_inverted_index.The | 33 |
| abstract_inverted_index.and | 86, 99, 148 |
| abstract_inverted_index.are | 125 |
| abstract_inverted_index.for | 5, 29, 69, 106, 157 |
| abstract_inverted_index.our | 135, 151 |
| abstract_inverted_index.the | 14, 22, 30, 44, 56, 65, 70, 82, 93, 100, 107, 119, 122, 146 |
| abstract_inverted_index.two | 6 |
| abstract_inverted_index.This | 73 |
| abstract_inverted_index.bond | 40 |
| abstract_inverted_index.give | 154 |
| abstract_inverted_index.good | 155 |
| abstract_inverted_index.have | 26, 142 |
| abstract_inverted_index.one. | 32 |
| abstract_inverted_index.same | 15 |
| abstract_inverted_index.show | 149 |
| abstract_inverted_index.some | 138 |
| abstract_inverted_index.such | 128 |
| abstract_inverted_index.that | 124, 150 |
| abstract_inverted_index.upon | 88 |
| abstract_inverted_index.used | 68 |
| abstract_inverted_index.cases | 140 |
| abstract_inverted_index.first | 23, 34, 71, 94 |
| abstract_inverted_index.large | 83, 90, 104, 131 |
| abstract_inverted_index.limit | 85 |
| abstract_inverted_index.might | 25 |
| abstract_inverted_index.model | 4 |
| abstract_inverted_index.their | 62 |
| abstract_inverted_index.types | 57 |
| abstract_inverted_index.which | 55, 141 |
| abstract_inverted_index.while | 43 |
| abstract_inverted_index.depend | 60 |
| abstract_inverted_index.during | 21 |
| abstract_inverted_index.finite | 158 |
| abstract_inverted_index.model, | 42 |
| abstract_inverted_index.second | 31, 45, 108, 111, 130 |
| abstract_inverted_index.enables | 77, 115 |
| abstract_inverted_index.network | 16 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.process | 53, 75, 113 |
| abstract_inverted_index.results | 136, 153 |
| abstract_inverted_index.through | 38, 137 |
| abstract_inverted_index.analysed | 37 |
| abstract_inverted_index.appeared | 143 |
| abstract_inverted_index.clusters | 67 |
| abstract_inverted_index.epidemic | 24, 35, 46 |
| abstract_inverted_index.fraction | 120 |
| abstract_inverted_index.immunity | 28 |
| abstract_inverted_index.infected | 20, 126 |
| abstract_inverted_index.outbreak | 91, 105 |
| abstract_inverted_index.position | 63 |
| abstract_inverted_index.specific | 139 |
| abstract_inverted_index.(partial) | 27 |
| abstract_inverted_index.branching | 52, 74, 112 |
| abstract_inverted_index.calculate | 118 |
| abstract_inverted_index.epidemic, | 95 |
| abstract_inverted_index.epidemic. | 72, 109 |
| abstract_inverted_index.epidemics | 12 |
| abstract_inverted_index.outbreak. | 132 |
| abstract_inverted_index.parameter | 98 |
| abstract_inverted_index.threshold | 97 |
| abstract_inverted_index.Recovered) | 11 |
| abstract_inverted_index.asymptotic | 152 |
| abstract_inverted_index.calculate, | 80 |
| abstract_inverted_index.illustrate | 134 |
| abstract_inverted_index.literature | 147 |
| abstract_inverted_index.population | 84, 123 |
| abstract_inverted_index.previously | 144 |
| abstract_inverted_index.stochastic | 3 |
| abstract_inverted_index.structured | 17 |
| abstract_inverted_index.successive | 7 |
| abstract_inverted_index.three-type | 51 |
| abstract_inverted_index.Individuals | 19 |
| abstract_inverted_index.Infectious, | 10 |
| abstract_inverted_index.conditional | 87 |
| abstract_inverted_index.individuals | 59 |
| abstract_inverted_index.percolation | 41, 66 |
| abstract_inverted_index.population. | 18 |
| abstract_inverted_index.probability | 101 |
| abstract_inverted_index.approximated | 48 |
| abstract_inverted_index.populations. | 159 |
| abstract_inverted_index.(Susceptible, | 9 |
| abstract_inverted_index.approximation | 76, 114 |
| abstract_inverted_index.approximations | 156 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |