Modified LDA Approach For Cluster Based Gene Classification Using K-Mean Method Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2020.04.270
Role of gene expression in cancer and cellular process is a complex problem that continues to haunt and challenge researchers. Sheer number of genes and inter related biological processes make the process of identifying more complex. Gene classification and analysis is a very difficult task for data scientists, as it requires various data, information and facts for making different quality articulation. Latent Dirichlet Allocation (LDA) has shown its compatibility for investigation and quality articulation in solid and malignant growth tissues. LDA is used to connect or grouping of genomic data and results are subsequently used for investigation. This work proposes A Modified Latent Dirichlet Allocation (MLDA) for gene classification and achieves quality articulation. The proposed MLDA identify and group differentially expressed genes between healthy and cancer tissues of various types. Experimental results report better performance of MLDA as compared to current state of art methods over Breast and Lung cancer data sets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2020.04.270
- OA Status
- diamond
- Cited By
- 13
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3033348432
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3033348432Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2020.04.270Digital Object Identifier
- Title
-
Modified LDA Approach For Cluster Based Gene Classification Using K-Mean MethodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Reva Joshi, Ritu Prasad, Pradeep Mewada, Praneet SaurabhList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2020.04.270Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2020.04.270Direct OA link when available
- Concepts
-
Latent Dirichlet allocation, Computer science, Artificial intelligence, Machine learning, Data mining, Pattern recognition (psychology), Topic modelTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 3, 2022: 4, 2021: 3, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3033348432 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2020.04.270 |
| ids.doi | https://doi.org/10.1016/j.procs.2020.04.270 |
| ids.mag | 3033348432 |
| ids.openalex | https://openalex.org/W3033348432 |
| fwci | 1.17032368 |
| type | article |
| title | Modified LDA Approach For Cluster Based Gene Classification Using K-Mean Method |
| biblio.issue | |
| biblio.volume | 171 |
| biblio.last_page | 2500 |
| biblio.first_page | 2493 |
| topics[0].id | https://openalex.org/T10885 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene expression and cancer classification |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| topics[2].id | https://openalex.org/T12254 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9641000032424927 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Machine Learning in Bioinformatics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C500882744 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7989472150802612 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q269236 |
| concepts[0].display_name | Latent Dirichlet allocation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7805718779563904 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3973292112350464 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3765176832675934 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36922311782836914 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.32034730911254883 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C171686336 |
| concepts[6].level | 2 |
| concepts[6].score | 0.1891314685344696 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3532085 |
| concepts[6].display_name | Topic model |
| keywords[0].id | https://openalex.org/keywords/latent-dirichlet-allocation |
| keywords[0].score | 0.7989472150802612 |
| keywords[0].display_name | Latent Dirichlet allocation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7805718779563904 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3973292112350464 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.3765176832675934 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.36922311782836914 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.32034730911254883 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/topic-model |
| keywords[6].score | 0.1891314685344696 |
| keywords[6].display_name | Topic model |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2020.04.270 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2020.04.270 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5008205926 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Reva Joshi |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Technocrats Institute of Technology Advance, Bhopal, M.P., India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Reva Joshi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Technocrats Institute of Technology Advance, Bhopal, M.P., India |
| authorships[1].author.id | https://openalex.org/A5100890116 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ritu Prasad |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Technocrats Institute of Technology Advance, Bhopal, M.P., India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ritu Prasad |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Technocrats Institute of Technology Advance, Bhopal, M.P., India |
| authorships[2].author.id | https://openalex.org/A5073018637 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Pradeep Mewada |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Technocrats Institute of Technology, Bhopal, M.P., India |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pradeep Mewada |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Technocrats Institute of Technology, Bhopal, M.P., India |
| authorships[3].author.id | https://openalex.org/A5046363887 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3782-4279 |
| authorships[3].author.display_name | Praneet Saurabh |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Technocrats Institute of Technology, Bhopal, M.P., India |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Praneet Saurabh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, Technocrats Institute of Technology, Bhopal, M.P., India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2020.04.270 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modified LDA Approach For Cluster Based Gene Classification Using K-Mean Method |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10885 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene expression and cancer classification |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W2033914206, https://openalex.org/W4283697347 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2020.04.270 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2020.04.270 |
| primary_location.id | doi:10.1016/j.procs.2020.04.270 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2020.04.270 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2147246240, https://openalex.org/W2131994307, https://openalex.org/W2092868756, https://openalex.org/W2005145657, https://openalex.org/W1965856472, https://openalex.org/W2318405211, https://openalex.org/W2059638643, https://openalex.org/W2158085718, https://openalex.org/W2147152072, https://openalex.org/W2109363337, https://openalex.org/W2128985829, https://openalex.org/W2142295792, https://openalex.org/W2161004148, https://openalex.org/W2141305489, https://openalex.org/W2132619562, https://openalex.org/W1539969737, https://openalex.org/W2321189130, https://openalex.org/W2097554815, https://openalex.org/W21024707, https://openalex.org/W6604770398, https://openalex.org/W117880125 |
| referenced_works_count | 21 |
| abstract_inverted_index.A | 100 |
| abstract_inverted_index.a | 10, 41 |
| abstract_inverted_index.as | 48, 137 |
| abstract_inverted_index.in | 4, 74 |
| abstract_inverted_index.is | 9, 40, 81 |
| abstract_inverted_index.it | 49 |
| abstract_inverted_index.of | 1, 22, 32, 87, 127, 135, 142 |
| abstract_inverted_index.or | 85 |
| abstract_inverted_index.to | 15, 83, 139 |
| abstract_inverted_index.LDA | 80 |
| abstract_inverted_index.The | 113 |
| abstract_inverted_index.and | 6, 17, 24, 38, 54, 71, 76, 90, 109, 117, 124, 147 |
| abstract_inverted_index.are | 92 |
| abstract_inverted_index.art | 143 |
| abstract_inverted_index.for | 45, 56, 69, 95, 106 |
| abstract_inverted_index.has | 65 |
| abstract_inverted_index.its | 67 |
| abstract_inverted_index.the | 30 |
| abstract_inverted_index.Gene | 36 |
| abstract_inverted_index.Lung | 148 |
| abstract_inverted_index.MLDA | 115, 136 |
| abstract_inverted_index.Role | 0 |
| abstract_inverted_index.This | 97 |
| abstract_inverted_index.data | 46, 89, 150 |
| abstract_inverted_index.gene | 2, 107 |
| abstract_inverted_index.make | 29 |
| abstract_inverted_index.more | 34 |
| abstract_inverted_index.over | 145 |
| abstract_inverted_index.task | 44 |
| abstract_inverted_index.that | 13 |
| abstract_inverted_index.used | 82, 94 |
| abstract_inverted_index.very | 42 |
| abstract_inverted_index.work | 98 |
| abstract_inverted_index.(LDA) | 64 |
| abstract_inverted_index.Sheer | 20 |
| abstract_inverted_index.data, | 52 |
| abstract_inverted_index.facts | 55 |
| abstract_inverted_index.genes | 23, 121 |
| abstract_inverted_index.group | 118 |
| abstract_inverted_index.haunt | 16 |
| abstract_inverted_index.inter | 25 |
| abstract_inverted_index.sets. | 151 |
| abstract_inverted_index.shown | 66 |
| abstract_inverted_index.solid | 75 |
| abstract_inverted_index.state | 141 |
| abstract_inverted_index.(MLDA) | 105 |
| abstract_inverted_index.Breast | 146 |
| abstract_inverted_index.Latent | 61, 102 |
| abstract_inverted_index.better | 133 |
| abstract_inverted_index.cancer | 5, 125, 149 |
| abstract_inverted_index.growth | 78 |
| abstract_inverted_index.making | 57 |
| abstract_inverted_index.number | 21 |
| abstract_inverted_index.report | 132 |
| abstract_inverted_index.types. | 129 |
| abstract_inverted_index.between | 122 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.connect | 84 |
| abstract_inverted_index.current | 140 |
| abstract_inverted_index.genomic | 88 |
| abstract_inverted_index.healthy | 123 |
| abstract_inverted_index.methods | 144 |
| abstract_inverted_index.problem | 12 |
| abstract_inverted_index.process | 8, 31 |
| abstract_inverted_index.quality | 59, 72, 111 |
| abstract_inverted_index.related | 26 |
| abstract_inverted_index.results | 91, 131 |
| abstract_inverted_index.tissues | 126 |
| abstract_inverted_index.various | 51, 128 |
| abstract_inverted_index.Modified | 101 |
| abstract_inverted_index.achieves | 110 |
| abstract_inverted_index.analysis | 39 |
| abstract_inverted_index.cellular | 7 |
| abstract_inverted_index.compared | 138 |
| abstract_inverted_index.complex. | 35 |
| abstract_inverted_index.grouping | 86 |
| abstract_inverted_index.identify | 116 |
| abstract_inverted_index.proposed | 114 |
| abstract_inverted_index.proposes | 99 |
| abstract_inverted_index.requires | 50 |
| abstract_inverted_index.tissues. | 79 |
| abstract_inverted_index.Dirichlet | 62, 103 |
| abstract_inverted_index.challenge | 18 |
| abstract_inverted_index.continues | 14 |
| abstract_inverted_index.different | 58 |
| abstract_inverted_index.difficult | 43 |
| abstract_inverted_index.expressed | 120 |
| abstract_inverted_index.malignant | 77 |
| abstract_inverted_index.processes | 28 |
| abstract_inverted_index.Allocation | 63, 104 |
| abstract_inverted_index.biological | 27 |
| abstract_inverted_index.expression | 3 |
| abstract_inverted_index.identifying | 33 |
| abstract_inverted_index.information | 53 |
| abstract_inverted_index.performance | 134 |
| abstract_inverted_index.scientists, | 47 |
| abstract_inverted_index.Experimental | 130 |
| abstract_inverted_index.articulation | 73 |
| abstract_inverted_index.researchers. | 19 |
| abstract_inverted_index.subsequently | 93 |
| abstract_inverted_index.articulation. | 60, 112 |
| abstract_inverted_index.compatibility | 68 |
| abstract_inverted_index.investigation | 70 |
| abstract_inverted_index.classification | 37, 108 |
| abstract_inverted_index.differentially | 119 |
| abstract_inverted_index.investigation. | 96 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.76200212 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |