Modified one-class support vector machine for content-based image retrieval with relevance feedback Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1080/23311916.2018.1541702
Image retrieval via traditional Content-Based Image Retrieval (CBIR) often incurs the semantic gap problem—non-correlation of image retrieval results with human semantic interpretation of images. In this paper, Relevance Feedback (RF) mechanism was incorporated into a traditional Query by Visual Example CBIR (QVER) system. The inherent curse of dimensionality associated with RF mechanism was catered for by performing feature selection using Principal Component Analysis (PCA). The amount of feature dimension retained was determined based on a not more than 5% loss constrain imposed on average precision of retrieval result. While the asymmetry and small sample size nature of the resultant image dataset informed the use of a modified One-Class Support Vector Machine (OC-SVM) classifier, three image databases (DB10, DB20 and DB100) were used to test the OC-SVM RF mechanism. Across DB10, DB20 and DB100, Average Indexing Time of 0.451, 0.3017, and 0.0904s were recorded, respectively. For a critical recall value of 0.3, precision values for QVER were 0.7881, 0.7200 and 0.9112, while OC-SVM RF yielded precision of 0.8908, 0.8409, and 0.9503, respectively. Also, the use of PCA yielded tolerable degradation of 3.54, 4.39 and 7.40% in precision on DB10, DB20, and DB100, respectively, with 80% reduction in feature dimension. The OC-SVM RF increased the precision and invariably the reliability of the CBIR system by ranking most of the relevant images higher. Also, the target class was identified faster than the conventional method, thereby reducing the image retrieval time of the OC-SVM RF.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/23311916.2018.1541702
- OA Status
- gold
- Cited By
- 2
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2899290156
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2899290156Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/23311916.2018.1541702Digital Object Identifier
- Title
-
Modified one-class support vector machine for content-based image retrieval with relevance feedbackWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Oluwole Abiodun Adegbola, David Aborisade, Segun I. Popoola, Abraham Amole, Aderemi A. AtayeroList of authors in order
- Landing page
-
https://doi.org/10.1080/23311916.2018.1541702Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/23311916.2018.1541702Direct OA link when available
- Concepts
-
Support vector machine, Artificial intelligence, Content-based image retrieval, Image retrieval, Computer science, Relevance feedback, Pattern recognition (psychology), Dimensionality reduction, Principal component analysis, Semantic gap, Precision and recall, Feature selection, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2899290156 |
|---|---|
| doi | https://doi.org/10.1080/23311916.2018.1541702 |
| ids.doi | https://doi.org/10.1080/23311916.2018.1541702 |
| ids.mag | 2899290156 |
| ids.openalex | https://openalex.org/W2899290156 |
| fwci | 0.14438254 |
| type | article |
| title | Modified one-class support vector machine for content-based image retrieval with relevance feedback |
| biblio.issue | 1 |
| biblio.volume | 5 |
| biblio.last_page | 1541702 |
| biblio.first_page | 1541702 |
| topics[0].id | https://openalex.org/T10824 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Retrieval and Classification Techniques |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9890999794006348 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| funders[0].id | https://openalex.org/F4320323779 |
| funders[0].ror | https://ror.org/00frr1n84 |
| funders[0].display_name | Covenant University |
| is_xpac | False |
| apc_list.value | 950 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1165 |
| apc_paid.value | 950 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1165 |
| concepts[0].id | https://openalex.org/C12267149 |
| concepts[0].level | 2 |
| concepts[0].score | 0.708982527256012 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[0].display_name | Support vector machine |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6961261630058289 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2780052074 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6719945669174194 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1128648 |
| concepts[2].display_name | Content-based image retrieval |
| concepts[3].id | https://openalex.org/C1667742 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6302867531776428 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10927554 |
| concepts[3].display_name | Image retrieval |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.610618531703949 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2779532271 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5916354656219482 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q445558 |
| concepts[5].display_name | Relevance feedback |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5841852426528931 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C70518039 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5567062497138977 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[7].display_name | Dimensionality reduction |
| concepts[8].id | https://openalex.org/C27438332 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5051758885383606 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[8].display_name | Principal component analysis |
| concepts[9].id | https://openalex.org/C86034646 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4994509220123291 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q474311 |
| concepts[9].display_name | Semantic gap |
| concepts[10].id | https://openalex.org/C81669768 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44553637504577637 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2359161 |
| concepts[10].display_name | Precision and recall |
| concepts[11].id | https://openalex.org/C148483581 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43802446126937866 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[11].display_name | Feature selection |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.23590821027755737 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/support-vector-machine |
| keywords[0].score | 0.708982527256012 |
| keywords[0].display_name | Support vector machine |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6961261630058289 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/content-based-image-retrieval |
| keywords[2].score | 0.6719945669174194 |
| keywords[2].display_name | Content-based image retrieval |
| keywords[3].id | https://openalex.org/keywords/image-retrieval |
| keywords[3].score | 0.6302867531776428 |
| keywords[3].display_name | Image retrieval |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.610618531703949 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/relevance-feedback |
| keywords[5].score | 0.5916354656219482 |
| keywords[5].display_name | Relevance feedback |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5841852426528931 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[7].score | 0.5567062497138977 |
| keywords[7].display_name | Dimensionality reduction |
| keywords[8].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[8].score | 0.5051758885383606 |
| keywords[8].display_name | Principal component analysis |
| keywords[9].id | https://openalex.org/keywords/semantic-gap |
| keywords[9].score | 0.4994509220123291 |
| keywords[9].display_name | Semantic gap |
| keywords[10].id | https://openalex.org/keywords/precision-and-recall |
| keywords[10].score | 0.44553637504577637 |
| keywords[10].display_name | Precision and recall |
| keywords[11].id | https://openalex.org/keywords/feature-selection |
| keywords[11].score | 0.43802446126937866 |
| keywords[11].display_name | Feature selection |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.23590821027755737 |
| keywords[12].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1080/23311916.2018.1541702 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764513175 |
| locations[0].source.issn | 2331-1916 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2331-1916 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Cogent Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310311767 |
| locations[0].source.host_organization_name | Cogent OA |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311767 |
| locations[0].source.host_organization_lineage_names | Cogent OA |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cogent Engineering |
| locations[0].landing_page_url | https://doi.org/10.1080/23311916.2018.1541702 |
| locations[1].id | pmh:oai:doaj.org/article:d1d9711a06a84fc48abda51b957c4b2b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Cogent Engineering, Vol 5, Iss 1 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/d1d9711a06a84fc48abda51b957c4b2b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5067451508 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2600-569X |
| authorships[0].author.display_name | Oluwole Abiodun Adegbola |
| authorships[0].countries | NG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45230691 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology , P.M.B. 4000, Ogbomoso, Nigeria |
| authorships[0].institutions[0].id | https://openalex.org/I45230691 |
| authorships[0].institutions[0].ror | https://ror.org/043hyzt56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I45230691 |
| authorships[0].institutions[0].country_code | NG |
| authorships[0].institutions[0].display_name | Ladoke Akintola University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Oluwole A. Adegbola |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology , P.M.B. 4000, Ogbomoso, Nigeria |
| authorships[1].author.id | https://openalex.org/A5060430531 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | David Aborisade |
| authorships[1].countries | NG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45230691 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology , P.M.B. 4000, Ogbomoso, Nigeria |
| authorships[1].institutions[0].id | https://openalex.org/I45230691 |
| authorships[1].institutions[0].ror | https://ror.org/043hyzt56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I45230691 |
| authorships[1].institutions[0].country_code | NG |
| authorships[1].institutions[0].display_name | Ladoke Akintola University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David O. Aborisade |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology , P.M.B. 4000, Ogbomoso, Nigeria |
| authorships[2].author.id | https://openalex.org/A5057364146 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3941-5903 |
| authorships[2].author.display_name | Segun I. Popoola |
| authorships[2].countries | NG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I186771145 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Information Engineering, Covenant University , P.M.B. 1023, Ota, Nigeria |
| authorships[2].institutions[0].id | https://openalex.org/I186771145 |
| authorships[2].institutions[0].ror | https://ror.org/00frr1n84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I186771145 |
| authorships[2].institutions[0].country_code | NG |
| authorships[2].institutions[0].display_name | Covenant University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Segun I. Popoola |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Electrical and Information Engineering, Covenant University , P.M.B. 1023, Ota, Nigeria |
| authorships[3].author.id | https://openalex.org/A5001332155 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0275-8670 |
| authorships[3].author.display_name | Abraham Amole |
| authorships[3].countries | NG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I136632592 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical, Electronic and Computer Engineering, Bells University of Technology , P.M.B. 1015, Ota, Nigeria |
| authorships[3].institutions[0].id | https://openalex.org/I136632592 |
| authorships[3].institutions[0].ror | https://ror.org/009drq556 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I136632592 |
| authorships[3].institutions[0].country_code | NG |
| authorships[3].institutions[0].display_name | Bells University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Olatide A. Amole |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical, Electronic and Computer Engineering, Bells University of Technology , P.M.B. 1015, Ota, Nigeria |
| authorships[4].author.id | https://openalex.org/A5062245280 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4427-2679 |
| authorships[4].author.display_name | Aderemi A. Atayero |
| authorships[4].countries | NG |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I186771145 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Information Engineering, Covenant University , P.M.B. 1023, Ota, Nigeria |
| authorships[4].institutions[0].id | https://openalex.org/I186771145 |
| authorships[4].institutions[0].ror | https://ror.org/00frr1n84 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I186771145 |
| authorships[4].institutions[0].country_code | NG |
| authorships[4].institutions[0].display_name | Covenant University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Aderemi A. Atayero |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Information Engineering, Covenant University , P.M.B. 1023, Ota, Nigeria |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/23311916.2018.1541702 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modified one-class support vector machine for content-based image retrieval with relevance feedback |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10824 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Retrieval and Classification Techniques |
| related_works | https://openalex.org/W2034539438, https://openalex.org/W2056100761, https://openalex.org/W2075105123, https://openalex.org/W1606474234, https://openalex.org/W1497114142, https://openalex.org/W2142297230, https://openalex.org/W2290071120, https://openalex.org/W1658719554, https://openalex.org/W2186394444, https://openalex.org/W2543381692 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/23311916.2018.1541702 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764513175 |
| best_oa_location.source.issn | 2331-1916 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2331-1916 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Cogent Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310311767 |
| best_oa_location.source.host_organization_name | Cogent OA |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311767 |
| best_oa_location.source.host_organization_lineage_names | Cogent OA |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cogent Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1080/23311916.2018.1541702 |
| primary_location.id | doi:10.1080/23311916.2018.1541702 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764513175 |
| primary_location.source.issn | 2331-1916 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2331-1916 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Cogent Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310311767 |
| primary_location.source.host_organization_name | Cogent OA |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311767 |
| primary_location.source.host_organization_lineage_names | Cogent OA |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cogent Engineering |
| primary_location.landing_page_url | https://doi.org/10.1080/23311916.2018.1541702 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2063957149, https://openalex.org/W2155099190, https://openalex.org/W2143426320, https://openalex.org/W2130730142, https://openalex.org/W2171307033, https://openalex.org/W1542828881, https://openalex.org/W2142235701, https://openalex.org/W2085874869, https://openalex.org/W2130660124, https://openalex.org/W2122906720, https://openalex.org/W1987806499, https://openalex.org/W96898081, https://openalex.org/W2105497548, https://openalex.org/W2156909104, https://openalex.org/W2027993732, https://openalex.org/W2027913322, https://openalex.org/W4230674625, https://openalex.org/W1983071923, https://openalex.org/W1555711139, https://openalex.org/W1570542661, https://openalex.org/W2811125347, https://openalex.org/W2093191240, https://openalex.org/W3139690853, https://openalex.org/W2097005463, https://openalex.org/W2117933099 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 34, 74, 105, 145 |
| abstract_inverted_index.5% | 78 |
| abstract_inverted_index.In | 24 |
| abstract_inverted_index.RF | 50, 126, 162, 200 |
| abstract_inverted_index.by | 37, 55, 212 |
| abstract_inverted_index.in | 184, 195 |
| abstract_inverted_index.of | 14, 22, 46, 66, 85, 96, 104, 136, 149, 165, 174, 179, 208, 215, 237 |
| abstract_inverted_index.on | 73, 82, 186 |
| abstract_inverted_index.to | 122 |
| abstract_inverted_index.80% | 193 |
| abstract_inverted_index.For | 144 |
| abstract_inverted_index.PCA | 175 |
| abstract_inverted_index.RF. | 240 |
| abstract_inverted_index.The | 43, 64, 198 |
| abstract_inverted_index.and | 91, 118, 131, 139, 158, 168, 182, 189, 204 |
| abstract_inverted_index.for | 54, 153 |
| abstract_inverted_index.gap | 12 |
| abstract_inverted_index.not | 75 |
| abstract_inverted_index.the | 10, 89, 97, 102, 124, 172, 202, 206, 209, 216, 221, 228, 233, 238 |
| abstract_inverted_index.use | 103, 173 |
| abstract_inverted_index.via | 2 |
| abstract_inverted_index.was | 31, 52, 70, 224 |
| abstract_inverted_index.(RF) | 29 |
| abstract_inverted_index.0.3, | 150 |
| abstract_inverted_index.4.39 | 181 |
| abstract_inverted_index.CBIR | 40, 210 |
| abstract_inverted_index.DB20 | 117, 130 |
| abstract_inverted_index.QVER | 154 |
| abstract_inverted_index.Time | 135 |
| abstract_inverted_index.into | 33 |
| abstract_inverted_index.loss | 79 |
| abstract_inverted_index.more | 76 |
| abstract_inverted_index.most | 214 |
| abstract_inverted_index.size | 94 |
| abstract_inverted_index.test | 123 |
| abstract_inverted_index.than | 77, 227 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.time | 236 |
| abstract_inverted_index.used | 121 |
| abstract_inverted_index.were | 120, 141, 155 |
| abstract_inverted_index.with | 18, 49, 192 |
| abstract_inverted_index.3.54, | 180 |
| abstract_inverted_index.7.40% | 183 |
| abstract_inverted_index.Also, | 171, 220 |
| abstract_inverted_index.DB10, | 129, 187 |
| abstract_inverted_index.DB20, | 188 |
| abstract_inverted_index.Image | 0, 5 |
| abstract_inverted_index.Query | 36 |
| abstract_inverted_index.While | 88 |
| abstract_inverted_index.based | 72 |
| abstract_inverted_index.class | 223 |
| abstract_inverted_index.curse | 45 |
| abstract_inverted_index.human | 19 |
| abstract_inverted_index.image | 15, 99, 114, 234 |
| abstract_inverted_index.often | 8 |
| abstract_inverted_index.small | 92 |
| abstract_inverted_index.three | 113 |
| abstract_inverted_index.using | 59 |
| abstract_inverted_index.value | 148 |
| abstract_inverted_index.while | 160 |
| abstract_inverted_index.(CBIR) | 7 |
| abstract_inverted_index.(DB10, | 116 |
| abstract_inverted_index.(PCA). | 63 |
| abstract_inverted_index.(QVER) | 41 |
| abstract_inverted_index.0.451, | 137 |
| abstract_inverted_index.0.7200 | 157 |
| abstract_inverted_index.Across | 128 |
| abstract_inverted_index.DB100) | 119 |
| abstract_inverted_index.DB100, | 132, 190 |
| abstract_inverted_index.OC-SVM | 125, 161, 199, 239 |
| abstract_inverted_index.Vector | 109 |
| abstract_inverted_index.Visual | 38 |
| abstract_inverted_index.amount | 65 |
| abstract_inverted_index.faster | 226 |
| abstract_inverted_index.images | 218 |
| abstract_inverted_index.incurs | 9 |
| abstract_inverted_index.nature | 95 |
| abstract_inverted_index.paper, | 26 |
| abstract_inverted_index.recall | 147 |
| abstract_inverted_index.sample | 93 |
| abstract_inverted_index.system | 211 |
| abstract_inverted_index.target | 222 |
| abstract_inverted_index.values | 152 |
| abstract_inverted_index.0.0904s | 140 |
| abstract_inverted_index.0.3017, | 138 |
| abstract_inverted_index.0.7881, | 156 |
| abstract_inverted_index.0.8409, | 167 |
| abstract_inverted_index.0.8908, | 166 |
| abstract_inverted_index.0.9112, | 159 |
| abstract_inverted_index.0.9503, | 169 |
| abstract_inverted_index.Average | 133 |
| abstract_inverted_index.Example | 39 |
| abstract_inverted_index.Machine | 110 |
| abstract_inverted_index.Support | 108 |
| abstract_inverted_index.average | 83 |
| abstract_inverted_index.catered | 53 |
| abstract_inverted_index.dataset | 100 |
| abstract_inverted_index.feature | 57, 67, 196 |
| abstract_inverted_index.higher. | 219 |
| abstract_inverted_index.images. | 23 |
| abstract_inverted_index.imposed | 81 |
| abstract_inverted_index.method, | 230 |
| abstract_inverted_index.ranking | 213 |
| abstract_inverted_index.result. | 87 |
| abstract_inverted_index.results | 17 |
| abstract_inverted_index.system. | 42 |
| abstract_inverted_index.thereby | 231 |
| abstract_inverted_index.yielded | 163, 176 |
| abstract_inverted_index.(OC-SVM) | 111 |
| abstract_inverted_index.Analysis | 62 |
| abstract_inverted_index.Feedback | 28 |
| abstract_inverted_index.Indexing | 134 |
| abstract_inverted_index.critical | 146 |
| abstract_inverted_index.informed | 101 |
| abstract_inverted_index.inherent | 44 |
| abstract_inverted_index.modified | 106 |
| abstract_inverted_index.reducing | 232 |
| abstract_inverted_index.relevant | 217 |
| abstract_inverted_index.retained | 69 |
| abstract_inverted_index.semantic | 11, 20 |
| abstract_inverted_index.Component | 61 |
| abstract_inverted_index.One-Class | 107 |
| abstract_inverted_index.Principal | 60 |
| abstract_inverted_index.Relevance | 27 |
| abstract_inverted_index.Retrieval | 6 |
| abstract_inverted_index.asymmetry | 90 |
| abstract_inverted_index.constrain | 80 |
| abstract_inverted_index.databases | 115 |
| abstract_inverted_index.dimension | 68 |
| abstract_inverted_index.increased | 201 |
| abstract_inverted_index.mechanism | 30, 51 |
| abstract_inverted_index.precision | 84, 151, 164, 185, 203 |
| abstract_inverted_index.recorded, | 142 |
| abstract_inverted_index.reduction | 194 |
| abstract_inverted_index.resultant | 98 |
| abstract_inverted_index.retrieval | 1, 16, 86, 235 |
| abstract_inverted_index.selection | 58 |
| abstract_inverted_index.tolerable | 177 |
| abstract_inverted_index.associated | 48 |
| abstract_inverted_index.determined | 71 |
| abstract_inverted_index.dimension. | 197 |
| abstract_inverted_index.identified | 225 |
| abstract_inverted_index.invariably | 205 |
| abstract_inverted_index.mechanism. | 127 |
| abstract_inverted_index.performing | 56 |
| abstract_inverted_index.classifier, | 112 |
| abstract_inverted_index.degradation | 178 |
| abstract_inverted_index.reliability | 207 |
| abstract_inverted_index.traditional | 3, 35 |
| abstract_inverted_index.conventional | 229 |
| abstract_inverted_index.incorporated | 32 |
| abstract_inverted_index.Content-Based | 4 |
| abstract_inverted_index.respectively, | 191 |
| abstract_inverted_index.respectively. | 143, 170 |
| abstract_inverted_index.dimensionality | 47 |
| abstract_inverted_index.interpretation | 21 |
| abstract_inverted_index.problem—non-correlation | 13 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5067451508, https://openalex.org/A5057364146 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I186771145, https://openalex.org/I45230691 |
| citation_normalized_percentile.value | 0.47194369 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |