Modified-vehicle detection and localization model for autonomous vehicle traffic system Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200
The modification of vehicles for financial gain is an evolving tendency observed in India. Recognizing and detecting of these modified illicit cars is an important but critical task in autonomous vehicles (AV). It is always possible for a cyclist or pedestrian to traverse obstacles or other fixed objects that appear in front of any moving vehicle. Vehicles that are autonomous or self-driving require a different system to quickly identify both stationary and moving objects. A deep learning model named you only look once version 5 (YOLOv5)-convolutional block attention module (CBAM) is proposed here for the Indian traffic system which is based on YOLOv5m. The proposed algorithm, YOLOv5-CBAM, has three major components. The first module, the backbone module is employed for feature extraction. The second module is to detect static as well as dynamic objects at the same time and the third CBAM module is adopted in the backbone and neck part, which mainly focuses on the more prominent features. Two cross stage partial (CSP) modules were used after every convolutional layer resulting in an additional head to the proposed model. Four head modules equipped with anchor boxes performed the final detection. For the present dataset, the proposed model showed 98.2% mean average precision (mAP), 98.4% precision, and 94.8% recall as compared to the original YOLOv5m.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200
- OA Status
- diamond
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404850740
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404850740Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200Digital Object Identifier
- Title
-
Modified-vehicle detection and localization model for autonomous vehicle traffic systemWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-29Full publication date if available
- Authors
-
Amit Juyal, Sachin Sharma, Shuchi BhadulaList of authors in order
- Landing page
-
https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200Direct OA link when available
- Concepts
-
Computer science, Automotive engineering, Vehicle tracking system, Real-time computing, Artificial intelligence, Engineering, Kalman filterTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404850740 |
|---|---|
| doi | https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200 |
| ids.doi | https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200 |
| ids.openalex | https://openalex.org/W4404850740 |
| fwci | 0.79858269 |
| type | article |
| title | Modified-vehicle detection and localization model for autonomous vehicle traffic system |
| biblio.issue | 2 |
| biblio.volume | 37 |
| biblio.last_page | 1183 |
| biblio.first_page | 1183 |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.7706999778747559 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T13717 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.7591999769210815 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Algorithms and Applications |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.7300000190734863 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5337255001068115 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C171146098 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4712677001953125 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[1].display_name | Automotive engineering |
| concepts[2].id | https://openalex.org/C84119951 |
| concepts[2].level | 3 |
| concepts[2].score | 0.41079506278038025 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3498530 |
| concepts[2].display_name | Vehicle tracking system |
| concepts[3].id | https://openalex.org/C79403827 |
| concepts[3].level | 1 |
| concepts[3].score | 0.358747661113739 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[3].display_name | Real-time computing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2974932789802551 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2805807590484619 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C157286648 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0926513671875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[6].display_name | Kalman filter |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5337255001068115 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/automotive-engineering |
| keywords[1].score | 0.4712677001953125 |
| keywords[1].display_name | Automotive engineering |
| keywords[2].id | https://openalex.org/keywords/vehicle-tracking-system |
| keywords[2].score | 0.41079506278038025 |
| keywords[2].display_name | Vehicle tracking system |
| keywords[3].id | https://openalex.org/keywords/real-time-computing |
| keywords[3].score | 0.358747661113739 |
| keywords[3].display_name | Real-time computing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.2974932789802551 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.2805807590484619 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/kalman-filter |
| keywords[6].score | 0.0926513671875 |
| keywords[6].display_name | Kalman filter |
| language | en |
| locations[0].id | doi:10.11591/ijeecs.v37.i2.pp1183-1200 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764855249 |
| locations[0].source.issn | 2502-4752, 2502-4760 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2502-4752 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| locations[0].landing_page_url | https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058123173 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1779-8429 |
| authorships[0].author.display_name | Amit Juyal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amit Juyal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100735225 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7821-3685 |
| authorships[1].author.display_name | Sachin Sharma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sachin Sharma |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5041827539 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3328-6044 |
| authorships[2].author.display_name | Shuchi Bhadula |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shuchi Bhadula |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Modified-vehicle detection and localization model for autonomous vehicle traffic system |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.7706999778747559 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W3011975694, https://openalex.org/W3149198594, https://openalex.org/W262982000, https://openalex.org/W4210926302, https://openalex.org/W3160711186, https://openalex.org/W2971083806, https://openalex.org/W2902127828, https://openalex.org/W1979258994, https://openalex.org/W820986941, https://openalex.org/W2207445159 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijeecs.v37.i2.pp1183-1200 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764855249 |
| best_oa_location.source.issn | 2502-4752, 2502-4760 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2502-4752 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200 |
| primary_location.id | doi:10.11591/ijeecs.v37.i2.pp1183-1200 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764855249 |
| primary_location.source.issn | 2502-4752, 2502-4760 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2502-4752 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| primary_location.landing_page_url | https://doi.org/10.11591/ijeecs.v37.i2.pp1183-1200 |
| publication_date | 2024-11-29 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 84 |
| abstract_inverted_index.A | 74 |
| abstract_inverted_index.a | 37, 63 |
| abstract_inverted_index.It | 32 |
| abstract_inverted_index.an | 8, 23, 173 |
| abstract_inverted_index.as | 129, 131, 209 |
| abstract_inverted_index.at | 134 |
| abstract_inverted_index.in | 12, 28, 50, 145, 172 |
| abstract_inverted_index.is | 7, 22, 33, 90, 99, 117, 125, 143 |
| abstract_inverted_index.of | 2, 17, 52 |
| abstract_inverted_index.on | 101, 154 |
| abstract_inverted_index.or | 39, 44, 60 |
| abstract_inverted_index.to | 41, 66, 126, 176, 211 |
| abstract_inverted_index.For | 191 |
| abstract_inverted_index.The | 103, 111, 122 |
| abstract_inverted_index.Two | 159 |
| abstract_inverted_index.and | 15, 71, 138, 148, 206 |
| abstract_inverted_index.any | 53 |
| abstract_inverted_index.are | 58 |
| abstract_inverted_index.but | 25 |
| abstract_inverted_index.for | 4, 36, 93, 119 |
| abstract_inverted_index.has | 107 |
| abstract_inverted_index.the | 94, 114, 135, 139, 146, 155, 177, 188, 192, 195, 212 |
| abstract_inverted_index.you | 79 |
| abstract_inverted_index.CBAM | 141 |
| abstract_inverted_index.Four | 180 |
| abstract_inverted_index.both | 69 |
| abstract_inverted_index.cars | 21 |
| abstract_inverted_index.deep | 75 |
| abstract_inverted_index.gain | 6 |
| abstract_inverted_index.head | 175, 181 |
| abstract_inverted_index.here | 92 |
| abstract_inverted_index.look | 81 |
| abstract_inverted_index.mean | 200 |
| abstract_inverted_index.more | 156 |
| abstract_inverted_index.neck | 149 |
| abstract_inverted_index.once | 82 |
| abstract_inverted_index.only | 80 |
| abstract_inverted_index.same | 136 |
| abstract_inverted_index.task | 27 |
| abstract_inverted_index.that | 48, 57 |
| abstract_inverted_index.time | 137 |
| abstract_inverted_index.used | 166 |
| abstract_inverted_index.well | 130 |
| abstract_inverted_index.were | 165 |
| abstract_inverted_index.with | 184 |
| abstract_inverted_index.(AV). | 31 |
| abstract_inverted_index.(CSP) | 163 |
| abstract_inverted_index.94.8% | 207 |
| abstract_inverted_index.98.2% | 199 |
| abstract_inverted_index.98.4% | 204 |
| abstract_inverted_index.after | 167 |
| abstract_inverted_index.based | 100 |
| abstract_inverted_index.block | 86 |
| abstract_inverted_index.boxes | 186 |
| abstract_inverted_index.cross | 160 |
| abstract_inverted_index.every | 168 |
| abstract_inverted_index.final | 189 |
| abstract_inverted_index.first | 112 |
| abstract_inverted_index.fixed | 46 |
| abstract_inverted_index.front | 51 |
| abstract_inverted_index.layer | 170 |
| abstract_inverted_index.major | 109 |
| abstract_inverted_index.model | 77, 197 |
| abstract_inverted_index.named | 78 |
| abstract_inverted_index.other | 45 |
| abstract_inverted_index.part, | 150 |
| abstract_inverted_index.stage | 161 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.third | 140 |
| abstract_inverted_index.three | 108 |
| abstract_inverted_index.which | 98, 151 |
| abstract_inverted_index.(CBAM) | 89 |
| abstract_inverted_index.(mAP), | 203 |
| abstract_inverted_index.India. | 13 |
| abstract_inverted_index.Indian | 95 |
| abstract_inverted_index.always | 34 |
| abstract_inverted_index.anchor | 185 |
| abstract_inverted_index.appear | 49 |
| abstract_inverted_index.detect | 127 |
| abstract_inverted_index.mainly | 152 |
| abstract_inverted_index.model. | 179 |
| abstract_inverted_index.module | 88, 116, 124, 142 |
| abstract_inverted_index.moving | 54, 72 |
| abstract_inverted_index.recall | 208 |
| abstract_inverted_index.second | 123 |
| abstract_inverted_index.showed | 198 |
| abstract_inverted_index.static | 128 |
| abstract_inverted_index.system | 65, 97 |
| abstract_inverted_index.adopted | 144 |
| abstract_inverted_index.average | 201 |
| abstract_inverted_index.cyclist | 38 |
| abstract_inverted_index.dynamic | 132 |
| abstract_inverted_index.feature | 120 |
| abstract_inverted_index.focuses | 153 |
| abstract_inverted_index.illicit | 20 |
| abstract_inverted_index.module, | 113 |
| abstract_inverted_index.modules | 164, 182 |
| abstract_inverted_index.objects | 47, 133 |
| abstract_inverted_index.partial | 162 |
| abstract_inverted_index.present | 193 |
| abstract_inverted_index.quickly | 67 |
| abstract_inverted_index.require | 62 |
| abstract_inverted_index.traffic | 96 |
| abstract_inverted_index.version | 83 |
| abstract_inverted_index.Vehicles | 56 |
| abstract_inverted_index.YOLOv5m. | 102 |
| abstract_inverted_index.backbone | 115, 147 |
| abstract_inverted_index.compared | 210 |
| abstract_inverted_index.critical | 26 |
| abstract_inverted_index.dataset, | 194 |
| abstract_inverted_index.employed | 118 |
| abstract_inverted_index.equipped | 183 |
| abstract_inverted_index.evolving | 9 |
| abstract_inverted_index.identify | 68 |
| abstract_inverted_index.learning | 76 |
| abstract_inverted_index.modified | 19 |
| abstract_inverted_index.objects. | 73 |
| abstract_inverted_index.observed | 11 |
| abstract_inverted_index.original | 213 |
| abstract_inverted_index.possible | 35 |
| abstract_inverted_index.proposed | 91, 104, 178, 196 |
| abstract_inverted_index.tendency | 10 |
| abstract_inverted_index.traverse | 42 |
| abstract_inverted_index.vehicle. | 55 |
| abstract_inverted_index.vehicles | 3, 30 |
| abstract_inverted_index.attention | 87 |
| abstract_inverted_index.detecting | 16 |
| abstract_inverted_index.different | 64 |
| abstract_inverted_index.features. | 158 |
| abstract_inverted_index.financial | 5 |
| abstract_inverted_index.important | 24 |
| abstract_inverted_index.obstacles | 43 |
| abstract_inverted_index.performed | 187 |
| abstract_inverted_index.precision | 202 |
| abstract_inverted_index.prominent | 157 |
| abstract_inverted_index.resulting | 171 |
| abstract_inverted_index.additional | 174 |
| abstract_inverted_index.algorithm, | 105 |
| abstract_inverted_index.autonomous | 29, 59 |
| abstract_inverted_index.detection. | 190 |
| abstract_inverted_index.pedestrian | 40 |
| abstract_inverted_index.precision, | 205 |
| abstract_inverted_index.stationary | 70 |
| abstract_inverted_index.Recognizing | 14 |
| abstract_inverted_index.components. | 110 |
| abstract_inverted_index.extraction. | 121 |
| abstract_inverted_index.<p>The | 0 |
| abstract_inverted_index.YOLOv5-CBAM, | 106 |
| abstract_inverted_index.modification | 1 |
| abstract_inverted_index.self-driving | 61 |
| abstract_inverted_index.convolutional | 169 |
| abstract_inverted_index.YOLOv5m.</p> | 214 |
| abstract_inverted_index.(YOLOv5)-convolutional | 85 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.68317452 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |