MoistureMapper: An Autonomous Mobile Robot for High-Resolution Soil Moisture Mapping at Scale Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.12716
Soil moisture is a quantity of interest in many application areas including agriculture and climate modeling. Existing methods are not suitable for scale applications due to large deployment costs in high-resolution sensing applications such as for variable irrigation. In this work, we design, build and field deploy an autonomous mobile robot, MoistureMapper, for soil moisture sensing. The robot is equipped with Time Domain Reflectometry (TDR) sensors and a direct push drill mechanism for deploying the sensor to measure volumetric water content in the soil. Additionally, we implement and evaluate multiple adaptive sampling strategies based on a Gaussian Process based modeling to build a spatial mapping of moisture distribution in the soil. We present results from large scale computational simulations and proof-of-concept deployment on the field. The adaptive sampling approach outperforms a greedy benchmark approach and results in up to 30\% reduction in travel distance and 5\% reduction in variance in the reconstructed moisture maps. Link to video showing field experiments: https://youtu.be/S4bJ4tRzObg
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.12716
- https://arxiv.org/pdf/2507.12716
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415309721
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415309721Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.12716Digital Object Identifier
- Title
-
MoistureMapper: An Autonomous Mobile Robot for High-Resolution Soil Moisture Mapping at ScaleWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-17Full publication date if available
- Authors
-
Neil L. Rose, Hui-Ya Chuang, Manuel A Andrade-Rodriguez, Rishi Parashar, Dani Or, Parikshit MainiList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.12716Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.12716Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.12716Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415309721 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.12716 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.12716 |
| ids.openalex | https://openalex.org/W4415309721 |
| fwci | |
| type | preprint |
| title | MoistureMapper: An Autonomous Mobile Robot for High-Resolution Soil Moisture Mapping at Scale |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9527999758720398 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T11978 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9401000142097473 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Soil Mechanics and Vehicle Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.12716 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.12716 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.12716 |
| locations[1].id | doi:10.48550/arxiv.2507.12716 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.12716 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5075023793 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5697-7334 |
| authorships[0].author.display_name | Neil L. Rose |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rose, Nathaniel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055300524 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hui-Ya Chuang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chuang, Hannah |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5119704344 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Manuel A Andrade-Rodriguez |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andrade-Rodriguez, Manuel A |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5088317314 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9733-7309 |
| authorships[3].author.display_name | Rishi Parashar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Parashar, Rishi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5042011044 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3236-2933 |
| authorships[4].author.display_name | Dani Or |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Or, Dani |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5016533175 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5229-4627 |
| authorships[5].author.display_name | Parikshit Maini |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Maini, Parikshit |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.12716 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | MoistureMapper: An Autonomous Mobile Robot for High-Resolution Soil Moisture Mapping at Scale |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9527999758720398 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.12716 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.12716 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.12716 |
| primary_location.id | pmh:oai:arXiv.org:2507.12716 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.12716 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.12716 |
| publication_date | 2025-07-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 67, 95, 102, 130 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.We | 111 |
| abstract_inverted_index.an | 47 |
| abstract_inverted_index.as | 34 |
| abstract_inverted_index.in | 7, 29, 81, 108, 136, 141, 147, 149 |
| abstract_inverted_index.is | 2, 58 |
| abstract_inverted_index.of | 5, 105 |
| abstract_inverted_index.on | 94, 122 |
| abstract_inverted_index.to | 25, 76, 100, 138, 155 |
| abstract_inverted_index.up | 137 |
| abstract_inverted_index.we | 41, 85 |
| abstract_inverted_index.5\% | 145 |
| abstract_inverted_index.The | 56, 125 |
| abstract_inverted_index.and | 13, 44, 66, 87, 119, 134, 144 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.due | 24 |
| abstract_inverted_index.for | 21, 35, 52, 72 |
| abstract_inverted_index.not | 19 |
| abstract_inverted_index.the | 74, 82, 109, 123, 150 |
| abstract_inverted_index.30\% | 139 |
| abstract_inverted_index.Link | 154 |
| abstract_inverted_index.Soil | 0 |
| abstract_inverted_index.Time | 61 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.many | 8 |
| abstract_inverted_index.push | 69 |
| abstract_inverted_index.soil | 53 |
| abstract_inverted_index.such | 33 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.with | 60 |
| abstract_inverted_index.(TDR) | 64 |
| abstract_inverted_index.areas | 10 |
| abstract_inverted_index.based | 93, 98 |
| abstract_inverted_index.build | 43, 101 |
| abstract_inverted_index.costs | 28 |
| abstract_inverted_index.drill | 70 |
| abstract_inverted_index.field | 45, 158 |
| abstract_inverted_index.large | 26, 115 |
| abstract_inverted_index.maps. | 153 |
| abstract_inverted_index.robot | 57 |
| abstract_inverted_index.scale | 22, 116 |
| abstract_inverted_index.soil. | 83, 110 |
| abstract_inverted_index.video | 156 |
| abstract_inverted_index.water | 79 |
| abstract_inverted_index.work, | 40 |
| abstract_inverted_index.Domain | 62 |
| abstract_inverted_index.deploy | 46 |
| abstract_inverted_index.direct | 68 |
| abstract_inverted_index.field. | 124 |
| abstract_inverted_index.greedy | 131 |
| abstract_inverted_index.mobile | 49 |
| abstract_inverted_index.robot, | 50 |
| abstract_inverted_index.sensor | 75 |
| abstract_inverted_index.travel | 142 |
| abstract_inverted_index.Process | 97 |
| abstract_inverted_index.climate | 14 |
| abstract_inverted_index.content | 80 |
| abstract_inverted_index.design, | 42 |
| abstract_inverted_index.mapping | 104 |
| abstract_inverted_index.measure | 77 |
| abstract_inverted_index.methods | 17 |
| abstract_inverted_index.present | 112 |
| abstract_inverted_index.results | 113, 135 |
| abstract_inverted_index.sensing | 31 |
| abstract_inverted_index.sensors | 65 |
| abstract_inverted_index.showing | 157 |
| abstract_inverted_index.spatial | 103 |
| abstract_inverted_index.Existing | 16 |
| abstract_inverted_index.Gaussian | 96 |
| abstract_inverted_index.adaptive | 90, 126 |
| abstract_inverted_index.approach | 128, 133 |
| abstract_inverted_index.distance | 143 |
| abstract_inverted_index.equipped | 59 |
| abstract_inverted_index.evaluate | 88 |
| abstract_inverted_index.interest | 6 |
| abstract_inverted_index.modeling | 99 |
| abstract_inverted_index.moisture | 1, 54, 106, 152 |
| abstract_inverted_index.multiple | 89 |
| abstract_inverted_index.quantity | 4 |
| abstract_inverted_index.sampling | 91, 127 |
| abstract_inverted_index.sensing. | 55 |
| abstract_inverted_index.suitable | 20 |
| abstract_inverted_index.variable | 36 |
| abstract_inverted_index.variance | 148 |
| abstract_inverted_index.benchmark | 132 |
| abstract_inverted_index.deploying | 73 |
| abstract_inverted_index.implement | 86 |
| abstract_inverted_index.including | 11 |
| abstract_inverted_index.mechanism | 71 |
| abstract_inverted_index.modeling. | 15 |
| abstract_inverted_index.reduction | 140, 146 |
| abstract_inverted_index.autonomous | 48 |
| abstract_inverted_index.deployment | 27, 121 |
| abstract_inverted_index.strategies | 92 |
| abstract_inverted_index.volumetric | 78 |
| abstract_inverted_index.agriculture | 12 |
| abstract_inverted_index.application | 9 |
| abstract_inverted_index.irrigation. | 37 |
| abstract_inverted_index.outperforms | 129 |
| abstract_inverted_index.simulations | 118 |
| abstract_inverted_index.applications | 23, 32 |
| abstract_inverted_index.distribution | 107 |
| abstract_inverted_index.experiments: | 159 |
| abstract_inverted_index.Additionally, | 84 |
| abstract_inverted_index.Reflectometry | 63 |
| abstract_inverted_index.computational | 117 |
| abstract_inverted_index.reconstructed | 151 |
| abstract_inverted_index.MoistureMapper, | 51 |
| abstract_inverted_index.high-resolution | 30 |
| abstract_inverted_index.proof-of-concept | 120 |
| abstract_inverted_index.https://youtu.be/S4bJ4tRzObg | 160 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |