Mold into a Graph: Efficient Bayesian Optimization over Mixed-Spaces Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.00893
Real-world optimization problems are generally not just black-box problems, but also involve mixed types of inputs in which discrete and continuous variables coexist. Such mixed-space optimization possesses the primary challenge of modeling complex interactions between the inputs. In this work, we propose a novel yet simple approach that entails exploiting the graph data structure to model the underlying relationship between variables, i.e., variables as nodes and interactions defined by edges. Then, a variational graph autoencoder is used to naturally take the interactions into account. We first provide empirical evidence of the existence of such graph structures and then suggest a joint framework of graph structure learning and latent space optimization to adaptively search for optimal graph connectivity. Experimental results demonstrate that our method shows remarkable performance, exceeding the existing approaches with significant computational efficiency for a number of synthetic and real-world tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.00893
- https://arxiv.org/pdf/2202.00893
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226524061
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226524061Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.00893Digital Object Identifier
- Title
-
Mold into a Graph: Efficient Bayesian Optimization over Mixed-SpacesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-02Full publication date if available
- Authors
-
Jaeyeon Ahn, Taehyeon Kim, Se-Young YunList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.00893Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.00893Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.00893Direct OA link when available
- Concepts
-
Bayesian optimization, Latent variable, Graph, Computer science, Optimization problem, Theoretical computer science, Mathematical optimization, Algorithm, Artificial intelligence, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226524061 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.00893 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.00893 |
| ids.openalex | https://openalex.org/W4226524061 |
| fwci | |
| type | preprint |
| title | Mold into a Graph: Efficient Bayesian Optimization over Mixed-Spaces |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12617 |
| topics[0].field.id | https://openalex.org/fields/21 |
| topics[0].field.display_name | Energy |
| topics[0].score | 0.958299994468689 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2105 |
| topics[0].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[0].display_name | Energy, Environment, and Transportation Policies |
| topics[1].id | https://openalex.org/T11273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9573000073432922 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Graph Neural Networks |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9560999870300293 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778049539 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6864151954650879 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[0].display_name | Bayesian optimization |
| concepts[1].id | https://openalex.org/C51167844 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6095316410064697 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[1].display_name | Latent variable |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5770687460899353 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5672725439071655 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C137836250 |
| concepts[4].level | 2 |
| concepts[4].score | 0.519048273563385 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[4].display_name | Optimization problem |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5166531205177307 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C126255220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4086366891860962 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[6].display_name | Mathematical optimization |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.31214001774787903 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.31052613258361816 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2914544939994812 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[0].score | 0.6864151954650879 |
| keywords[0].display_name | Bayesian optimization |
| keywords[1].id | https://openalex.org/keywords/latent-variable |
| keywords[1].score | 0.6095316410064697 |
| keywords[1].display_name | Latent variable |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5770687460899353 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5672725439071655 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/optimization-problem |
| keywords[4].score | 0.519048273563385 |
| keywords[4].display_name | Optimization problem |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.5166531205177307 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[6].score | 0.4086366891860962 |
| keywords[6].display_name | Mathematical optimization |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.31214001774787903 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.31052613258361816 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.2914544939994812 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.00893 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.00893 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.00893 |
| locations[1].id | doi:10.48550/arxiv.2202.00893 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.00893 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088786681 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jaeyeon Ahn |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahn, Jaeyeon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100774197 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5496-2625 |
| authorships[1].author.display_name | Taehyeon Kim |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kim, Taehyeon |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091674853 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Se-Young Yun |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yun, Seyoung |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.00893 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Mold into a Graph: Efficient Bayesian Optimization over Mixed-Spaces |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12617 |
| primary_topic.field.id | https://openalex.org/fields/21 |
| primary_topic.field.display_name | Energy |
| primary_topic.score | 0.958299994468689 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2105 |
| primary_topic.subfield.display_name | Renewable Energy, Sustainability and the Environment |
| primary_topic.display_name | Energy, Environment, and Transportation Policies |
| related_works | https://openalex.org/W3106461837, https://openalex.org/W3168182983, https://openalex.org/W4387079005, https://openalex.org/W4221166418, https://openalex.org/W3117893869, https://openalex.org/W2968265130, https://openalex.org/W2013493105, https://openalex.org/W2973085194, https://openalex.org/W1723534789, https://openalex.org/W4382203014 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.00893 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.00893 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.00893 |
| primary_location.id | pmh:oai:arXiv.org:2202.00893 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.00893 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.00893 |
| publication_date | 2022-02-02 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 42, 71, 99, 135 |
| abstract_inverted_index.In | 37 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.is | 75 |
| abstract_inverted_index.of | 14, 30, 89, 92, 102, 137 |
| abstract_inverted_index.to | 54, 77, 110 |
| abstract_inverted_index.we | 40 |
| abstract_inverted_index.and | 19, 65, 96, 106, 139 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.but | 9 |
| abstract_inverted_index.for | 113, 134 |
| abstract_inverted_index.not | 5 |
| abstract_inverted_index.our | 121 |
| abstract_inverted_index.the | 27, 35, 50, 56, 80, 90, 127 |
| abstract_inverted_index.yet | 44 |
| abstract_inverted_index.Such | 23 |
| abstract_inverted_index.also | 10 |
| abstract_inverted_index.data | 52 |
| abstract_inverted_index.into | 82 |
| abstract_inverted_index.just | 6 |
| abstract_inverted_index.such | 93 |
| abstract_inverted_index.take | 79 |
| abstract_inverted_index.that | 47, 120 |
| abstract_inverted_index.then | 97 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.used | 76 |
| abstract_inverted_index.with | 130 |
| abstract_inverted_index.Then, | 70 |
| abstract_inverted_index.first | 85 |
| abstract_inverted_index.graph | 51, 73, 94, 103, 115 |
| abstract_inverted_index.i.e., | 61 |
| abstract_inverted_index.joint | 100 |
| abstract_inverted_index.mixed | 12 |
| abstract_inverted_index.model | 55 |
| abstract_inverted_index.nodes | 64 |
| abstract_inverted_index.novel | 43 |
| abstract_inverted_index.shows | 123 |
| abstract_inverted_index.space | 108 |
| abstract_inverted_index.types | 13 |
| abstract_inverted_index.which | 17 |
| abstract_inverted_index.work, | 39 |
| abstract_inverted_index.edges. | 69 |
| abstract_inverted_index.inputs | 15 |
| abstract_inverted_index.latent | 107 |
| abstract_inverted_index.method | 122 |
| abstract_inverted_index.number | 136 |
| abstract_inverted_index.search | 112 |
| abstract_inverted_index.simple | 45 |
| abstract_inverted_index.tasks. | 141 |
| abstract_inverted_index.between | 34, 59 |
| abstract_inverted_index.complex | 32 |
| abstract_inverted_index.defined | 67 |
| abstract_inverted_index.entails | 48 |
| abstract_inverted_index.inputs. | 36 |
| abstract_inverted_index.involve | 11 |
| abstract_inverted_index.optimal | 114 |
| abstract_inverted_index.primary | 28 |
| abstract_inverted_index.propose | 41 |
| abstract_inverted_index.provide | 86 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.suggest | 98 |
| abstract_inverted_index.account. | 83 |
| abstract_inverted_index.approach | 46 |
| abstract_inverted_index.coexist. | 22 |
| abstract_inverted_index.discrete | 18 |
| abstract_inverted_index.evidence | 88 |
| abstract_inverted_index.existing | 128 |
| abstract_inverted_index.learning | 105 |
| abstract_inverted_index.modeling | 31 |
| abstract_inverted_index.problems | 2 |
| abstract_inverted_index.black-box | 7 |
| abstract_inverted_index.challenge | 29 |
| abstract_inverted_index.empirical | 87 |
| abstract_inverted_index.exceeding | 126 |
| abstract_inverted_index.existence | 91 |
| abstract_inverted_index.framework | 101 |
| abstract_inverted_index.generally | 4 |
| abstract_inverted_index.naturally | 78 |
| abstract_inverted_index.possesses | 26 |
| abstract_inverted_index.problems, | 8 |
| abstract_inverted_index.structure | 53, 104 |
| abstract_inverted_index.synthetic | 138 |
| abstract_inverted_index.variables | 21, 62 |
| abstract_inverted_index.Real-world | 0 |
| abstract_inverted_index.adaptively | 111 |
| abstract_inverted_index.approaches | 129 |
| abstract_inverted_index.continuous | 20 |
| abstract_inverted_index.efficiency | 133 |
| abstract_inverted_index.exploiting | 49 |
| abstract_inverted_index.real-world | 140 |
| abstract_inverted_index.remarkable | 124 |
| abstract_inverted_index.structures | 95 |
| abstract_inverted_index.underlying | 57 |
| abstract_inverted_index.variables, | 60 |
| abstract_inverted_index.autoencoder | 74 |
| abstract_inverted_index.demonstrate | 119 |
| abstract_inverted_index.mixed-space | 24 |
| abstract_inverted_index.significant | 131 |
| abstract_inverted_index.variational | 72 |
| abstract_inverted_index.Experimental | 117 |
| abstract_inverted_index.interactions | 33, 66, 81 |
| abstract_inverted_index.optimization | 1, 25, 109 |
| abstract_inverted_index.performance, | 125 |
| abstract_inverted_index.relationship | 58 |
| abstract_inverted_index.computational | 132 |
| abstract_inverted_index.connectivity. | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |