Molecule Design by Latent Prompt Transformer Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.03253
This paper proposes a latent prompt Transformer model for solving challenging optimization problems such as molecule design, where the goal is to find molecules with optimal values of a target chemical or biological property that can be computed by an existing software. Our proposed model consists of three components. (1) A latent vector whose prior distribution is modeled by a Unet transformation of a Gaussian white noise vector. (2) A molecule generation model that generates the string-based representation of molecule conditional on the latent vector in (1). We adopt the causal Transformer model that takes the latent vector in (1) as prompt. (3) A property prediction model that predicts the value of the target property of a molecule based on a non-linear regression on the latent vector in (1). We call the proposed model the latent prompt Transformer model. After initial training of the model on existing molecules and their property values, we then gradually shift the model distribution towards the region that supports desired values of the target property for the purpose of molecule design. Our experiments show that our proposed model achieves state of the art performances on several benchmark molecule design tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.03253
- https://arxiv.org/pdf/2310.03253
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387432109
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387432109Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.03253Digital Object Identifier
- Title
-
Molecule Design by Latent Prompt TransformerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-05Full publication date if available
- Authors
-
Deqian Kong, Yuhao Huang, Jianwen Xie, Ying WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.03253Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.03253Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.03253Direct OA link when available
- Concepts
-
Computer science, Transformer, Algorithm, Mathematics, Applied mathematics, Artificial intelligence, Engineering, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387432109 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.03253 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.03253 |
| ids.openalex | https://openalex.org/W4387432109 |
| fwci | |
| type | preprint |
| title | Molecule Design by Latent Prompt Transformer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10260 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.964900016784668 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Software Engineering Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5480114221572876 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.47843459248542786 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.45297425985336304 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3700062036514282 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C28826006 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3631416857242584 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[4].display_name | Applied mathematics |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34175026416778564 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1300012469291687 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C119599485 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[7].display_name | Electrical engineering |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5480114221572876 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.47843459248542786 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.45297425985336304 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.3700062036514282 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/applied-mathematics |
| keywords[4].score | 0.3631416857242584 |
| keywords[4].display_name | Applied mathematics |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.34175026416778564 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.1300012469291687 |
| keywords[6].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.03253 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.03253 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.03253 |
| locations[1].id | doi:10.48550/arxiv.2310.03253 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.03253 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5084751425 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-3581-8836 |
| authorships[0].author.display_name | Deqian Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kong, Deqian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101740599 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0126-1857 |
| authorships[1].author.display_name | Yuhao Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huang, Yuhao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102966958 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6818-7444 |
| authorships[2].author.display_name | Jianwen Xie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xie, Jianwen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059211394 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6581-9816 |
| authorships[3].author.display_name | Ying Wu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wu, Ying Nian |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.03253 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Molecule Design by Latent Prompt Transformer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2051487156, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.03253 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.03253 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.03253 |
| primary_location.id | pmh:oai:arXiv.org:2310.03253 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.03253 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.03253 |
| publication_date | 2023-10-05 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 50, 69, 103 |
| abstract_inverted_index.a | 3, 28, 59, 63, 116, 120 |
| abstract_inverted_index.We | 87, 129 |
| abstract_inverted_index.an | 39 |
| abstract_inverted_index.as | 14, 100 |
| abstract_inverted_index.be | 36 |
| abstract_inverted_index.by | 38, 58 |
| abstract_inverted_index.in | 85, 98, 127 |
| abstract_inverted_index.is | 20, 56 |
| abstract_inverted_index.of | 27, 46, 62, 78, 111, 115, 142, 166, 173, 185 |
| abstract_inverted_index.on | 81, 119, 123, 145, 189 |
| abstract_inverted_index.or | 31 |
| abstract_inverted_index.to | 21 |
| abstract_inverted_index.we | 152 |
| abstract_inverted_index.(1) | 49, 99 |
| abstract_inverted_index.(2) | 68 |
| abstract_inverted_index.(3) | 102 |
| abstract_inverted_index.Our | 42, 176 |
| abstract_inverted_index.and | 148 |
| abstract_inverted_index.art | 187 |
| abstract_inverted_index.can | 35 |
| abstract_inverted_index.for | 8, 170 |
| abstract_inverted_index.our | 180 |
| abstract_inverted_index.the | 18, 75, 82, 89, 95, 109, 112, 124, 131, 134, 143, 156, 160, 167, 171, 186 |
| abstract_inverted_index.(1). | 86, 128 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.Unet | 60 |
| abstract_inverted_index.call | 130 |
| abstract_inverted_index.find | 22 |
| abstract_inverted_index.goal | 19 |
| abstract_inverted_index.show | 178 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 34, 73, 93, 107, 162, 179 |
| abstract_inverted_index.then | 153 |
| abstract_inverted_index.with | 24 |
| abstract_inverted_index.After | 139 |
| abstract_inverted_index.adopt | 88 |
| abstract_inverted_index.based | 118 |
| abstract_inverted_index.model | 7, 44, 72, 92, 106, 133, 144, 157, 182 |
| abstract_inverted_index.noise | 66 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.prior | 54 |
| abstract_inverted_index.shift | 155 |
| abstract_inverted_index.state | 184 |
| abstract_inverted_index.takes | 94 |
| abstract_inverted_index.their | 149 |
| abstract_inverted_index.three | 47 |
| abstract_inverted_index.value | 110 |
| abstract_inverted_index.where | 17 |
| abstract_inverted_index.white | 65 |
| abstract_inverted_index.whose | 53 |
| abstract_inverted_index.causal | 90 |
| abstract_inverted_index.design | 193 |
| abstract_inverted_index.latent | 4, 51, 83, 96, 125, 135 |
| abstract_inverted_index.model. | 138 |
| abstract_inverted_index.prompt | 5, 136 |
| abstract_inverted_index.region | 161 |
| abstract_inverted_index.target | 29, 113, 168 |
| abstract_inverted_index.tasks. | 194 |
| abstract_inverted_index.values | 26, 165 |
| abstract_inverted_index.vector | 52, 84, 97, 126 |
| abstract_inverted_index.design, | 16 |
| abstract_inverted_index.design. | 175 |
| abstract_inverted_index.desired | 164 |
| abstract_inverted_index.initial | 140 |
| abstract_inverted_index.modeled | 57 |
| abstract_inverted_index.optimal | 25 |
| abstract_inverted_index.prompt. | 101 |
| abstract_inverted_index.purpose | 172 |
| abstract_inverted_index.several | 190 |
| abstract_inverted_index.solving | 9 |
| abstract_inverted_index.towards | 159 |
| abstract_inverted_index.values, | 151 |
| abstract_inverted_index.vector. | 67 |
| abstract_inverted_index.Gaussian | 64 |
| abstract_inverted_index.achieves | 183 |
| abstract_inverted_index.chemical | 30 |
| abstract_inverted_index.computed | 37 |
| abstract_inverted_index.consists | 45 |
| abstract_inverted_index.existing | 40, 146 |
| abstract_inverted_index.molecule | 15, 70, 79, 117, 174, 192 |
| abstract_inverted_index.predicts | 108 |
| abstract_inverted_index.problems | 12 |
| abstract_inverted_index.property | 33, 104, 114, 150, 169 |
| abstract_inverted_index.proposed | 43, 132, 181 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.supports | 163 |
| abstract_inverted_index.training | 141 |
| abstract_inverted_index.benchmark | 191 |
| abstract_inverted_index.generates | 74 |
| abstract_inverted_index.gradually | 154 |
| abstract_inverted_index.molecules | 23, 147 |
| abstract_inverted_index.software. | 41 |
| abstract_inverted_index.biological | 32 |
| abstract_inverted_index.generation | 71 |
| abstract_inverted_index.non-linear | 121 |
| abstract_inverted_index.prediction | 105 |
| abstract_inverted_index.regression | 122 |
| abstract_inverted_index.Transformer | 6, 91, 137 |
| abstract_inverted_index.challenging | 10 |
| abstract_inverted_index.components. | 48 |
| abstract_inverted_index.conditional | 80 |
| abstract_inverted_index.experiments | 177 |
| abstract_inverted_index.distribution | 55, 158 |
| abstract_inverted_index.optimization | 11 |
| abstract_inverted_index.performances | 188 |
| abstract_inverted_index.string-based | 76 |
| abstract_inverted_index.representation | 77 |
| abstract_inverted_index.transformation | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |