MOMBAT: Heart Rate Monitoring from Face Video using Pulse Modeling and\n Bayesian Tracking Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2005.04618
A non-invasive yet inexpensive method for heart rate (HR) monitoring is of\ngreat importance in many real-world applications including healthcare,\npsychology understanding, affective computing and biometrics. Face videos are\ncurrently utilized for such HR monitoring, but unfortunately this can lead to\nerrors due to the noise introduced by facial expressions, out-of-plane\nmovements, camera parameters (like focus change) and environmental factors. We\nalleviate these issues by proposing a novel face video based HR monitoring\nmethod MOMBAT, that is, MOnitoring using Modeling and BAyesian Tracking. We\nutilize out-of-plane face movements to define a novel quality estimation\nmechanism. Subsequently, we introduce a Fourier basis based modeling to\nreconstruct the cardiovascular pulse signal at the locations containing the\npoor quality, that is, the locations affected by out-of-plane face movements.\nFurthermore, we design a Bayesian decision theory based HR tracking mechanism\nto rectify the spurious HR estimates. Experimental results reveal that our\nproposed method, MOMBAT outperforms state-of-the-art HR monitoring methods and\nperforms HR monitoring with an average absolute error of 1.329 beats per minute\nand the Pearson correlation between estimated and actual heart rate is 0.9746.\nMoreover, it demonstrates that HR monitoring is significantly\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2005.04618
- https://arxiv.org/pdf/2005.04618
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297200455
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297200455Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2005.04618Digital Object Identifier
- Title
-
MOMBAT: Heart Rate Monitoring from Face Video using Pulse Modeling and\n Bayesian TrackingWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-10Full publication date if available
- Authors
-
Puneet Gupta, Brojeshwar Bhowmick, Arpan PalList of authors in order
- Landing page
-
https://arxiv.org/abs/2005.04618Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2005.04618Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.04618Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Computer vision, Bayesian probability, Biometrics, Face (sociological concept), Spurious relationship, Noise (video), SIGNAL (programming language), Pattern recognition (psychology), Machine learning, Programming language, Image (mathematics), Social science, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297200455 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2005.04618 |
| ids.openalex | https://openalex.org/W4297200455 |
| fwci | 0.0 |
| type | preprint |
| title | MOMBAT: Heart Rate Monitoring from Face Video using Pulse Modeling and\n Bayesian Tracking |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T10745 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.968500018119812 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Heart Rate Variability and Autonomic Control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.728614091873169 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5925848484039307 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5645577907562256 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C107673813 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5404303073883057 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[3].display_name | Bayesian probability |
| concepts[4].id | https://openalex.org/C184297639 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5117406845092773 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177765 |
| concepts[4].display_name | Biometrics |
| concepts[5].id | https://openalex.org/C2779304628 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49013790488243103 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[5].display_name | Face (sociological concept) |
| concepts[6].id | https://openalex.org/C97256817 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46043556928634644 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1462316 |
| concepts[6].display_name | Spurious relationship |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.436229407787323 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C2779843651 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42487335205078125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[8].display_name | SIGNAL (programming language) |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.39566972851753235 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2922210097312927 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C36289849 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[13].display_name | Social science |
| concepts[14].id | https://openalex.org/C144024400 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[14].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.728614091873169 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5925848484039307 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.5645577907562256 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.5404303073883057 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/biometrics |
| keywords[4].score | 0.5117406845092773 |
| keywords[4].display_name | Biometrics |
| keywords[5].id | https://openalex.org/keywords/face |
| keywords[5].score | 0.49013790488243103 |
| keywords[5].display_name | Face (sociological concept) |
| keywords[6].id | https://openalex.org/keywords/spurious-relationship |
| keywords[6].score | 0.46043556928634644 |
| keywords[6].display_name | Spurious relationship |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.436229407787323 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/signal |
| keywords[8].score | 0.42487335205078125 |
| keywords[8].display_name | SIGNAL (programming language) |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.39566972851753235 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.2922210097312927 |
| keywords[10].display_name | Machine learning |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2005.04618 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2005.04618 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2005.04618 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5084229134 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6188-1134 |
| authorships[0].author.display_name | Puneet Gupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gupta, Puneet |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080835883 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Brojeshwar Bhowmick |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bhowmick, Brojeshwar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5072563444 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9101-8051 |
| authorships[2].author.display_name | Arpan Pal |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Pal, Arpan |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.04618 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-09-27T00:00:00 |
| display_name | MOMBAT: Heart Rate Monitoring from Face Video using Pulse Modeling and\n Bayesian Tracking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W3113091479, https://openalex.org/W2162899405, https://openalex.org/W941090075, https://openalex.org/W2044987316, https://openalex.org/W3134374554, https://openalex.org/W2237480245, https://openalex.org/W2075065631, https://openalex.org/W2519167559, https://openalex.org/W4311248832, https://openalex.org/W4386113923 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.04618 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.04618 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.04618 |
| primary_location.id | pmh:oai:arXiv.org:2005.04618 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2005.04618 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2005.04618 |
| publication_date | 2020-05-10 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 60, 82, 89, 116 |
| abstract_inverted_index.HR | 30, 65, 121, 127, 138, 142, 168 |
| abstract_inverted_index.an | 145 |
| abstract_inverted_index.at | 99 |
| abstract_inverted_index.by | 43, 58, 110 |
| abstract_inverted_index.in | 13 |
| abstract_inverted_index.is | 10, 163, 170 |
| abstract_inverted_index.it | 165 |
| abstract_inverted_index.of | 149 |
| abstract_inverted_index.to | 39, 80 |
| abstract_inverted_index.we | 87, 114 |
| abstract_inverted_index.and | 22, 52, 73, 159 |
| abstract_inverted_index.but | 32 |
| abstract_inverted_index.can | 35 |
| abstract_inverted_index.due | 38 |
| abstract_inverted_index.for | 5, 28 |
| abstract_inverted_index.is, | 69, 106 |
| abstract_inverted_index.per | 152 |
| abstract_inverted_index.the | 40, 95, 100, 107, 125, 154 |
| abstract_inverted_index.yet | 2 |
| abstract_inverted_index.(HR) | 8 |
| abstract_inverted_index.Face | 24 |
| abstract_inverted_index.face | 62, 78, 112 |
| abstract_inverted_index.lead | 36 |
| abstract_inverted_index.many | 14 |
| abstract_inverted_index.rate | 7, 162 |
| abstract_inverted_index.such | 29 |
| abstract_inverted_index.that | 68, 105, 132, 167 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.with | 144 |
| abstract_inverted_index.(like | 49 |
| abstract_inverted_index.1.329 | 150 |
| abstract_inverted_index.based | 64, 92, 120 |
| abstract_inverted_index.basis | 91 |
| abstract_inverted_index.beats | 151 |
| abstract_inverted_index.error | 148 |
| abstract_inverted_index.focus | 50 |
| abstract_inverted_index.heart | 6, 161 |
| abstract_inverted_index.noise | 41 |
| abstract_inverted_index.novel | 61, 83 |
| abstract_inverted_index.pulse | 97 |
| abstract_inverted_index.these | 56 |
| abstract_inverted_index.using | 71 |
| abstract_inverted_index.video | 63 |
| abstract_inverted_index.MOMBAT | 135 |
| abstract_inverted_index.actual | 160 |
| abstract_inverted_index.camera | 47 |
| abstract_inverted_index.define | 81 |
| abstract_inverted_index.design | 115 |
| abstract_inverted_index.facial | 44 |
| abstract_inverted_index.issues | 57 |
| abstract_inverted_index.method | 4 |
| abstract_inverted_index.reveal | 131 |
| abstract_inverted_index.signal | 98 |
| abstract_inverted_index.theory | 119 |
| abstract_inverted_index.videos | 25 |
| abstract_inverted_index.Fourier | 90 |
| abstract_inverted_index.MOMBAT, | 67 |
| abstract_inverted_index.Pearson | 155 |
| abstract_inverted_index.average | 146 |
| abstract_inverted_index.between | 157 |
| abstract_inverted_index.change) | 51 |
| abstract_inverted_index.method, | 134 |
| abstract_inverted_index.methods | 140 |
| abstract_inverted_index.quality | 84 |
| abstract_inverted_index.rectify | 124 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.BAyesian | 74 |
| abstract_inverted_index.Bayesian | 117 |
| abstract_inverted_index.Modeling | 72 |
| abstract_inverted_index.absolute | 147 |
| abstract_inverted_index.affected | 109 |
| abstract_inverted_index.decision | 118 |
| abstract_inverted_index.factors. | 54 |
| abstract_inverted_index.modeling | 93 |
| abstract_inverted_index.quality, | 104 |
| abstract_inverted_index.spurious | 126 |
| abstract_inverted_index.tracking | 122 |
| abstract_inverted_index.utilized | 27 |
| abstract_inverted_index.Tracking. | 75 |
| abstract_inverted_index.affective | 20 |
| abstract_inverted_index.computing | 21 |
| abstract_inverted_index.estimated | 158 |
| abstract_inverted_index.including | 17 |
| abstract_inverted_index.introduce | 88 |
| abstract_inverted_index.locations | 101, 108 |
| abstract_inverted_index.movements | 79 |
| abstract_inverted_index.of\ngreat | 11 |
| abstract_inverted_index.proposing | 59 |
| abstract_inverted_index.the\npoor | 103 |
| abstract_inverted_index.MOnitoring | 70 |
| abstract_inverted_index.containing | 102 |
| abstract_inverted_index.estimates. | 128 |
| abstract_inverted_index.importance | 12 |
| abstract_inverted_index.introduced | 42 |
| abstract_inverted_index.monitoring | 9, 139, 143, 169 |
| abstract_inverted_index.parameters | 48 |
| abstract_inverted_index.real-world | 15 |
| abstract_inverted_index.to\nerrors | 37 |
| abstract_inverted_index.We\nutilize | 76 |
| abstract_inverted_index.biometrics. | 23 |
| abstract_inverted_index.correlation | 156 |
| abstract_inverted_index.inexpensive | 3 |
| abstract_inverted_index.minute\nand | 153 |
| abstract_inverted_index.monitoring, | 31 |
| abstract_inverted_index.outperforms | 136 |
| abstract_inverted_index.Experimental | 129 |
| abstract_inverted_index.applications | 16 |
| abstract_inverted_index.demonstrates | 166 |
| abstract_inverted_index.expressions, | 45 |
| abstract_inverted_index.non-invasive | 1 |
| abstract_inverted_index.out-of-plane | 77, 111 |
| abstract_inverted_index.Subsequently, | 86 |
| abstract_inverted_index.We\nalleviate | 55 |
| abstract_inverted_index.and\nperforms | 141 |
| abstract_inverted_index.environmental | 53 |
| abstract_inverted_index.mechanism\nto | 123 |
| abstract_inverted_index.our\nproposed | 133 |
| abstract_inverted_index.unfortunately | 33 |
| abstract_inverted_index.are\ncurrently | 26 |
| abstract_inverted_index.cardiovascular | 96 |
| abstract_inverted_index.understanding, | 19 |
| abstract_inverted_index.significantly\n | 171 |
| abstract_inverted_index.to\nreconstruct | 94 |
| abstract_inverted_index.state-of-the-art | 137 |
| abstract_inverted_index.0.9746.\nMoreover, | 164 |
| abstract_inverted_index.monitoring\nmethod | 66 |
| abstract_inverted_index.estimation\nmechanism. | 85 |
| abstract_inverted_index.healthcare,\npsychology | 18 |
| abstract_inverted_index.movements.\nFurthermore, | 113 |
| abstract_inverted_index.out-of-plane\nmovements, | 46 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.23712121 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |