Monitoring Trends of CO, NO2, SO2, and O3 Pollutants Using Time-Series Sentinel-5 Images Based on Google Earth Engine Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/pollutants3020019
Air pollution (AP) is a significant risk factor for public health, and its impact is becoming increasingly concerning in developing countries where it is causing a growing number of health issues. It is therefore essential to map and monitor AP sources in order to facilitate local action against them. This study aims at assessing the suitability of Sentinel-5 AP products based on Google Earth Engine (GEE) to monitor air pollutants, including CO, NO2, SO2, and O3 in Arak city, Iran from 2018 to 2019. Our process involved feeding satellite images to a cloud-free GEE platform that identified pollutant-affected areas monthly, seasonally, and annually. By coding in the JavaScript language in the GEE, four pollution parameters of Sentinel-5 satellite images were obtained. Following that, images with clouds were filtered by defining cloud filters, and average maps were extracted by defining average filters for both years. The employed model, which solely used Sentinel-5 AP products, was tested and assessed using ground data collected from the Environmental Organization of Central Province. Our findings revealed that annual CO, NO2, SO2, and O3 were estimated with RMSE of 0.13, 2.58, 4.62, and 2.36, respectively, for the year 2018. The annual CO, NO2, SO2, and O3 for the year 2019 were also calculated with RMSE of 0.17, 2.41, 4.31, and 4.6, respectively. The results demonstrated that seasonal AP was estimated with RMSE of 0.09, 5.39, 0.70, and 7.81 for CO, NO2, SO2, and O3, respectively, for the year 2018. Seasonal AP was also estimated with RMSE of 0.12, 4.99, 1.33, and 1.27 for CO, NO2, SO2, and O3, respectively, for the year 2019. The results of this study revealed that Sentinel-5 data combined with automated-based approaches, such as GEE, can perform better than traditional approaches (e.g., pollution measuring stations) for AP mapping and monitoring since they are capable of providing spatially distributed data that is sufficiently accurate.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/pollutants3020019
- https://www.mdpi.com/2673-4672/3/2/19/pdf?version=1684743437
- OA Status
- gold
- Cited By
- 44
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4377286914
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4377286914Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/pollutants3020019Digital Object Identifier
- Title
-
Monitoring Trends of CO, NO2, SO2, and O3 Pollutants Using Time-Series Sentinel-5 Images Based on Google Earth EngineWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-22Full publication date if available
- Authors
-
Mohammad Kazemi Garajeh, Giovanni Laneve, Hamid Reza Rezaei, Mostafa Sadeghnejad, Neda Mohamadzadeh, Behnam SalmaniList of authors in order
- Landing page
-
https://doi.org/10.3390/pollutants3020019Publisher landing page
- PDF URL
-
https://www.mdpi.com/2673-4672/3/2/19/pdf?version=1684743437Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2673-4672/3/2/19/pdf?version=1684743437Direct OA link when available
- Concepts
-
Gee, Environmental science, Satellite, Air pollution, Meteorology, Pollutant, Pollution, Mean squared error, Cloud computing, Air pollutants, Remote sensing, Atmospheric sciences, Geography, Generalized estimating equation, Statistics, Mathematics, Computer science, Engineering, Geology, Chemistry, Biology, Ecology, Aerospace engineering, Operating system, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
44Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 26, 2024: 14, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4377286914 |
|---|---|
| doi | https://doi.org/10.3390/pollutants3020019 |
| ids.doi | https://doi.org/10.3390/pollutants3020019 |
| ids.openalex | https://openalex.org/W4377286914 |
| fwci | 7.21080917 |
| type | article |
| title | Monitoring Trends of CO, NO2, SO2, and O3 Pollutants Using Time-Series Sentinel-5 Images Based on Google Earth Engine |
| biblio.issue | 2 |
| biblio.volume | 3 |
| biblio.last_page | 279 |
| biblio.first_page | 255 |
| topics[0].id | https://openalex.org/T12120 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Air Quality Monitoring and Forecasting |
| topics[1].id | https://openalex.org/T10190 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Air Quality and Health Impacts |
| topics[2].id | https://openalex.org/T12916 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | COVID-19 impact on air quality |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1082 |
| apc_paid.value | 1000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1082 |
| concepts[0].id | https://openalex.org/C53084192 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7478077411651611 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1485121 |
| concepts[0].display_name | Gee |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6239632964134216 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C19269812 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5517687797546387 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[2].display_name | Satellite |
| concepts[3].id | https://openalex.org/C559116025 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5237890481948853 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q131123 |
| concepts[3].display_name | Air pollution |
| concepts[4].id | https://openalex.org/C153294291 |
| concepts[4].level | 1 |
| concepts[4].score | 0.518135666847229 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[4].display_name | Meteorology |
| concepts[5].id | https://openalex.org/C82685317 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5019729137420654 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q19829510 |
| concepts[5].display_name | Pollutant |
| concepts[6].id | https://openalex.org/C521259446 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48929688334465027 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q58734 |
| concepts[6].display_name | Pollution |
| concepts[7].id | https://openalex.org/C139945424 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48861390352249146 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[7].display_name | Mean squared error |
| concepts[8].id | https://openalex.org/C79974875 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4806896150112152 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[8].display_name | Cloud computing |
| concepts[9].id | https://openalex.org/C2987853052 |
| concepts[9].level | 3 |
| concepts[9].score | 0.41010114550590515 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q131123 |
| concepts[9].display_name | Air pollutants |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.374378502368927 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C91586092 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3553653955459595 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q757520 |
| concepts[11].display_name | Atmospheric sciences |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.28697705268859863 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C27403532 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2804033160209656 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5532474 |
| concepts[13].display_name | Generalized estimating equation |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1823364496231079 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.17060214281082153 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.15788617730140686 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.10541802644729614 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C127313418 |
| concepts[18].level | 0 |
| concepts[18].score | 0.08549150824546814 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[18].display_name | Geology |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C18903297 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[21].display_name | Ecology |
| concepts[22].id | https://openalex.org/C146978453 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[22].display_name | Aerospace engineering |
| concepts[23].id | https://openalex.org/C111919701 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[23].display_name | Operating system |
| concepts[24].id | https://openalex.org/C178790620 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[24].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/gee |
| keywords[0].score | 0.7478077411651611 |
| keywords[0].display_name | Gee |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.6239632964134216 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/satellite |
| keywords[2].score | 0.5517687797546387 |
| keywords[2].display_name | Satellite |
| keywords[3].id | https://openalex.org/keywords/air-pollution |
| keywords[3].score | 0.5237890481948853 |
| keywords[3].display_name | Air pollution |
| keywords[4].id | https://openalex.org/keywords/meteorology |
| keywords[4].score | 0.518135666847229 |
| keywords[4].display_name | Meteorology |
| keywords[5].id | https://openalex.org/keywords/pollutant |
| keywords[5].score | 0.5019729137420654 |
| keywords[5].display_name | Pollutant |
| keywords[6].id | https://openalex.org/keywords/pollution |
| keywords[6].score | 0.48929688334465027 |
| keywords[6].display_name | Pollution |
| keywords[7].id | https://openalex.org/keywords/mean-squared-error |
| keywords[7].score | 0.48861390352249146 |
| keywords[7].display_name | Mean squared error |
| keywords[8].id | https://openalex.org/keywords/cloud-computing |
| keywords[8].score | 0.4806896150112152 |
| keywords[8].display_name | Cloud computing |
| keywords[9].id | https://openalex.org/keywords/air-pollutants |
| keywords[9].score | 0.41010114550590515 |
| keywords[9].display_name | Air pollutants |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.374378502368927 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/atmospheric-sciences |
| keywords[11].score | 0.3553653955459595 |
| keywords[11].display_name | Atmospheric sciences |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.28697705268859863 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/generalized-estimating-equation |
| keywords[13].score | 0.2804033160209656 |
| keywords[13].display_name | Generalized estimating equation |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.1823364496231079 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.17060214281082153 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.15788617730140686 |
| keywords[16].display_name | Computer science |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.10541802644729614 |
| keywords[17].display_name | Engineering |
| keywords[18].id | https://openalex.org/keywords/geology |
| keywords[18].score | 0.08549150824546814 |
| keywords[18].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/pollutants3020019 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205920 |
| locations[0].source.issn | 2673-4672 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2673-4672 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Pollutants |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2673-4672/3/2/19/pdf?version=1684743437 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Pollutants |
| locations[0].landing_page_url | https://doi.org/10.3390/pollutants3020019 |
| locations[1].id | pmh:oai:iris.uniroma1.it:11573/1708977 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196107 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | IRIS Research product catalog (Sapienza University of Rome) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/11573/1708977 |
| locations[2].id | pmh:oai:mdpi.com:/2673-4672/3/2/19/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Pollutants; Volume 3; Issue 2; Pages: 255-279 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/pollutants3020019 |
| locations[3].id | pmh:oai:doaj.org/article:235118ab4cfb4dfd8622507a2ac42840 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Pollutants, Vol 3, Iss 2, Pp 255-279 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/235118ab4cfb4dfd8622507a2ac42840 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5003656810 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7195-2813 |
| authorships[0].author.display_name | Mohammad Kazemi Garajeh |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I861853513 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, 00185 Rome, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I861853513 |
| authorships[0].institutions[0].ror | https://ror.org/02be6w209 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I861853513 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | Sapienza University of Rome |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohammad Kazemi Garajeh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, 00185 Rome, Italy |
| authorships[1].author.id | https://openalex.org/A5033043218 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6108-9764 |
| authorships[1].author.display_name | Giovanni Laneve |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I861853513 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Aerospace Engineering (SIA), Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I861853513 |
| authorships[1].institutions[0].ror | https://ror.org/02be6w209 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I861853513 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | Sapienza University of Rome |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Giovanni Laneve |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Aerospace Engineering (SIA), Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy |
| authorships[2].author.id | https://openalex.org/A5019809499 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9422-5600 |
| authorships[2].author.display_name | Hamid Reza Rezaei |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19700959 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33199, USA |
| authorships[2].institutions[0].id | https://openalex.org/I19700959 |
| authorships[2].institutions[0].ror | https://ror.org/02gz6gg07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I19700959 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Florida International University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hamid Rezaei |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33199, USA |
| authorships[3].author.id | https://openalex.org/A5102800331 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8833-0340 |
| authorships[3].author.display_name | Mostafa Sadeghnejad |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I189590672 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Geography and Geospatial Sciences, Kansas State University, 920 N17th Street, Manhattan, KS 66506, USA |
| authorships[3].institutions[0].id | https://openalex.org/I189590672 |
| authorships[3].institutions[0].ror | https://ror.org/05p1j8758 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I189590672 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Kansas State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mostafa Sadeghnejad |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Geography and Geospatial Sciences, Kansas State University, 920 N17th Street, Manhattan, KS 66506, USA |
| authorships[4].author.id | https://openalex.org/A5009369333 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Neda Mohamadzadeh |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I189590672 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Geography and Geospatial Sciences, Kansas State University, 920 N17th Street, Manhattan, KS 66506, USA |
| authorships[4].institutions[0].id | https://openalex.org/I189590672 |
| authorships[4].institutions[0].ror | https://ror.org/05p1j8758 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I189590672 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Kansas State University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Neda Mohamadzadeh |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Geography and Geospatial Sciences, Kansas State University, 920 N17th Street, Manhattan, KS 66506, USA |
| authorships[5].author.id | https://openalex.org/A5063843468 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0366-426X |
| authorships[5].author.display_name | Behnam Salmani |
| authorships[5].countries | IR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I41832843 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Remote Sensing and GIS, University of Tabriz, Tabriz 5166616471, Iran |
| authorships[5].institutions[0].id | https://openalex.org/I41832843 |
| authorships[5].institutions[0].ror | https://ror.org/01papkj44 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I41832843 |
| authorships[5].institutions[0].country_code | IR |
| authorships[5].institutions[0].display_name | University of Tabriz |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Behnam Salmani |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Remote Sensing and GIS, University of Tabriz, Tabriz 5166616471, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2673-4672/3/2/19/pdf?version=1684743437 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Monitoring Trends of CO, NO2, SO2, and O3 Pollutants Using Time-Series Sentinel-5 Images Based on Google Earth Engine |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12120 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Air Quality Monitoring and Forecasting |
| related_works | https://openalex.org/W2169359190, https://openalex.org/W2944809113, https://openalex.org/W2392427421, https://openalex.org/W2141097079, https://openalex.org/W2391255140, https://openalex.org/W2772399164, https://openalex.org/W2156878610, https://openalex.org/W142713682, https://openalex.org/W3084296660, https://openalex.org/W2388169538 |
| cited_by_count | 44 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 26 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 14 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/pollutants3020019 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205920 |
| best_oa_location.source.issn | 2673-4672 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2673-4672 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Pollutants |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2673-4672/3/2/19/pdf?version=1684743437 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Pollutants |
| best_oa_location.landing_page_url | https://doi.org/10.3390/pollutants3020019 |
| primary_location.id | doi:10.3390/pollutants3020019 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205920 |
| primary_location.source.issn | 2673-4672 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2673-4672 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Pollutants |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2673-4672/3/2/19/pdf?version=1684743437 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Pollutants |
| primary_location.landing_page_url | https://doi.org/10.3390/pollutants3020019 |
| publication_date | 2023-05-22 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2963102813, https://openalex.org/W3015275875, https://openalex.org/W4321598595, https://openalex.org/W4200212360, https://openalex.org/W3214881368, https://openalex.org/W2972133199, https://openalex.org/W3082766779, https://openalex.org/W6791975178, https://openalex.org/W3172595198, https://openalex.org/W6888703249, https://openalex.org/W3207841123, https://openalex.org/W4307482933, https://openalex.org/W2772892126, https://openalex.org/W4309770286, https://openalex.org/W3174640497, https://openalex.org/W3200502615, https://openalex.org/W4292974999, https://openalex.org/W4318953550, https://openalex.org/W4224010467, https://openalex.org/W4306175197, https://openalex.org/W3107129063, https://openalex.org/W2616663645, https://openalex.org/W3096427599, https://openalex.org/W6776415276, https://openalex.org/W4280641610, https://openalex.org/W6846193773, https://openalex.org/W3193504185, https://openalex.org/W3208172463, https://openalex.org/W4291017867, https://openalex.org/W6846662733, https://openalex.org/W4293731545, https://openalex.org/W2992181570, https://openalex.org/W3112942756, https://openalex.org/W3126691167, https://openalex.org/W4213334342, https://openalex.org/W4224310585, https://openalex.org/W4283745032, https://openalex.org/W4306750334, https://openalex.org/W4306665954, https://openalex.org/W3018988616, https://openalex.org/W3217264867, https://openalex.org/W4297533996, https://openalex.org/W3171489653, https://openalex.org/W2942101378, https://openalex.org/W3156399983, https://openalex.org/W306184754, https://openalex.org/W2039240409, https://openalex.org/W2087911819, https://openalex.org/W3208598748, https://openalex.org/W4322501726, https://openalex.org/W3137014038, https://openalex.org/W4308065859, https://openalex.org/W4309065909, https://openalex.org/W3020943172 |
| referenced_works_count | 54 |
| abstract_inverted_index.a | 4, 25, 91 |
| abstract_inverted_index.AP | 39, 58, 151, 221, 244, 294 |
| abstract_inverted_index.By | 103 |
| abstract_inverted_index.It | 31 |
| abstract_inverted_index.O3 | 75, 177, 199 |
| abstract_inverted_index.as | 281 |
| abstract_inverted_index.at | 52 |
| abstract_inverted_index.by | 128, 137 |
| abstract_inverted_index.in | 18, 41, 76, 105, 109 |
| abstract_inverted_index.is | 3, 14, 23, 32, 308 |
| abstract_inverted_index.it | 22 |
| abstract_inverted_index.of | 28, 56, 115, 165, 182, 209, 226, 250, 269, 302 |
| abstract_inverted_index.on | 61 |
| abstract_inverted_index.to | 35, 43, 66, 82, 90 |
| abstract_inverted_index.Air | 0 |
| abstract_inverted_index.CO, | 71, 173, 195, 233, 257 |
| abstract_inverted_index.GEE | 93 |
| abstract_inverted_index.O3, | 237, 261 |
| abstract_inverted_index.Our | 84, 168 |
| abstract_inverted_index.The | 144, 193, 216, 267 |
| abstract_inverted_index.air | 68 |
| abstract_inverted_index.and | 11, 37, 74, 101, 132, 155, 176, 186, 198, 213, 230, 236, 254, 260, 296 |
| abstract_inverted_index.are | 300 |
| abstract_inverted_index.can | 283 |
| abstract_inverted_index.for | 8, 141, 189, 200, 232, 239, 256, 263, 293 |
| abstract_inverted_index.its | 12 |
| abstract_inverted_index.map | 36 |
| abstract_inverted_index.the | 54, 106, 110, 162, 190, 201, 240, 264 |
| abstract_inverted_index.was | 153, 222, 245 |
| abstract_inverted_index.(AP) | 2 |
| abstract_inverted_index.1.27 | 255 |
| abstract_inverted_index.2018 | 81 |
| abstract_inverted_index.2019 | 203 |
| abstract_inverted_index.4.6, | 214 |
| abstract_inverted_index.7.81 | 231 |
| abstract_inverted_index.Arak | 77 |
| abstract_inverted_index.GEE, | 111, 282 |
| abstract_inverted_index.Iran | 79 |
| abstract_inverted_index.NO2, | 72, 174, 196, 234, 258 |
| abstract_inverted_index.RMSE | 181, 208, 225, 249 |
| abstract_inverted_index.SO2, | 73, 175, 197, 235, 259 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.aims | 51 |
| abstract_inverted_index.also | 205, 246 |
| abstract_inverted_index.both | 142 |
| abstract_inverted_index.data | 159, 275, 306 |
| abstract_inverted_index.four | 112 |
| abstract_inverted_index.from | 80, 161 |
| abstract_inverted_index.maps | 134 |
| abstract_inverted_index.risk | 6 |
| abstract_inverted_index.such | 280 |
| abstract_inverted_index.than | 286 |
| abstract_inverted_index.that | 95, 171, 219, 273, 307 |
| abstract_inverted_index.they | 299 |
| abstract_inverted_index.this | 270 |
| abstract_inverted_index.used | 149 |
| abstract_inverted_index.were | 119, 126, 135, 178, 204 |
| abstract_inverted_index.with | 124, 180, 207, 224, 248, 277 |
| abstract_inverted_index.year | 191, 202, 241, 265 |
| abstract_inverted_index.(GEE) | 65 |
| abstract_inverted_index.0.09, | 227 |
| abstract_inverted_index.0.12, | 251 |
| abstract_inverted_index.0.13, | 183 |
| abstract_inverted_index.0.17, | 210 |
| abstract_inverted_index.0.70, | 229 |
| abstract_inverted_index.1.33, | 253 |
| abstract_inverted_index.2.36, | 187 |
| abstract_inverted_index.2.41, | 211 |
| abstract_inverted_index.2.58, | 184 |
| abstract_inverted_index.2018. | 192, 242 |
| abstract_inverted_index.2019. | 83, 266 |
| abstract_inverted_index.4.31, | 212 |
| abstract_inverted_index.4.62, | 185 |
| abstract_inverted_index.4.99, | 252 |
| abstract_inverted_index.5.39, | 228 |
| abstract_inverted_index.Earth | 63 |
| abstract_inverted_index.areas | 98 |
| abstract_inverted_index.based | 60 |
| abstract_inverted_index.city, | 78 |
| abstract_inverted_index.cloud | 130 |
| abstract_inverted_index.local | 45 |
| abstract_inverted_index.order | 42 |
| abstract_inverted_index.since | 298 |
| abstract_inverted_index.study | 50, 271 |
| abstract_inverted_index.that, | 122 |
| abstract_inverted_index.them. | 48 |
| abstract_inverted_index.using | 157 |
| abstract_inverted_index.where | 21 |
| abstract_inverted_index.which | 147 |
| abstract_inverted_index.(e.g., | 289 |
| abstract_inverted_index.Engine | 64 |
| abstract_inverted_index.Google | 62 |
| abstract_inverted_index.action | 46 |
| abstract_inverted_index.annual | 172, 194 |
| abstract_inverted_index.better | 285 |
| abstract_inverted_index.clouds | 125 |
| abstract_inverted_index.coding | 104 |
| abstract_inverted_index.factor | 7 |
| abstract_inverted_index.ground | 158 |
| abstract_inverted_index.health | 29 |
| abstract_inverted_index.images | 89, 118, 123 |
| abstract_inverted_index.impact | 13 |
| abstract_inverted_index.model, | 146 |
| abstract_inverted_index.number | 27 |
| abstract_inverted_index.public | 9 |
| abstract_inverted_index.solely | 148 |
| abstract_inverted_index.tested | 154 |
| abstract_inverted_index.years. | 143 |
| abstract_inverted_index.Central | 166 |
| abstract_inverted_index.against | 47 |
| abstract_inverted_index.average | 133, 139 |
| abstract_inverted_index.capable | 301 |
| abstract_inverted_index.causing | 24 |
| abstract_inverted_index.feeding | 87 |
| abstract_inverted_index.filters | 140 |
| abstract_inverted_index.growing | 26 |
| abstract_inverted_index.health, | 10 |
| abstract_inverted_index.issues. | 30 |
| abstract_inverted_index.mapping | 295 |
| abstract_inverted_index.monitor | 38, 67 |
| abstract_inverted_index.perform | 284 |
| abstract_inverted_index.process | 85 |
| abstract_inverted_index.results | 217, 268 |
| abstract_inverted_index.sources | 40 |
| abstract_inverted_index.Seasonal | 243 |
| abstract_inverted_index.assessed | 156 |
| abstract_inverted_index.becoming | 15 |
| abstract_inverted_index.combined | 276 |
| abstract_inverted_index.defining | 129, 138 |
| abstract_inverted_index.employed | 145 |
| abstract_inverted_index.filtered | 127 |
| abstract_inverted_index.filters, | 131 |
| abstract_inverted_index.findings | 169 |
| abstract_inverted_index.involved | 86 |
| abstract_inverted_index.language | 108 |
| abstract_inverted_index.monthly, | 99 |
| abstract_inverted_index.platform | 94 |
| abstract_inverted_index.products | 59 |
| abstract_inverted_index.revealed | 170, 272 |
| abstract_inverted_index.seasonal | 220 |
| abstract_inverted_index.Following | 121 |
| abstract_inverted_index.Province. | 167 |
| abstract_inverted_index.accurate. | 310 |
| abstract_inverted_index.annually. | 102 |
| abstract_inverted_index.assessing | 53 |
| abstract_inverted_index.collected | 160 |
| abstract_inverted_index.countries | 20 |
| abstract_inverted_index.essential | 34 |
| abstract_inverted_index.estimated | 179, 223, 247 |
| abstract_inverted_index.extracted | 136 |
| abstract_inverted_index.including | 70 |
| abstract_inverted_index.measuring | 291 |
| abstract_inverted_index.obtained. | 120 |
| abstract_inverted_index.pollution | 1, 113, 290 |
| abstract_inverted_index.products, | 152 |
| abstract_inverted_index.providing | 303 |
| abstract_inverted_index.satellite | 88, 117 |
| abstract_inverted_index.spatially | 304 |
| abstract_inverted_index.stations) | 292 |
| abstract_inverted_index.therefore | 33 |
| abstract_inverted_index.JavaScript | 107 |
| abstract_inverted_index.Sentinel-5 | 57, 116, 150, 274 |
| abstract_inverted_index.approaches | 288 |
| abstract_inverted_index.calculated | 206 |
| abstract_inverted_index.cloud-free | 92 |
| abstract_inverted_index.concerning | 17 |
| abstract_inverted_index.developing | 19 |
| abstract_inverted_index.facilitate | 44 |
| abstract_inverted_index.identified | 96 |
| abstract_inverted_index.monitoring | 297 |
| abstract_inverted_index.parameters | 114 |
| abstract_inverted_index.approaches, | 279 |
| abstract_inverted_index.distributed | 305 |
| abstract_inverted_index.pollutants, | 69 |
| abstract_inverted_index.seasonally, | 100 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.suitability | 55 |
| abstract_inverted_index.traditional | 287 |
| abstract_inverted_index.Organization | 164 |
| abstract_inverted_index.demonstrated | 218 |
| abstract_inverted_index.increasingly | 16 |
| abstract_inverted_index.sufficiently | 309 |
| abstract_inverted_index.Environmental | 163 |
| abstract_inverted_index.respectively, | 188, 238, 262 |
| abstract_inverted_index.respectively. | 215 |
| abstract_inverted_index.automated-based | 278 |
| abstract_inverted_index.pollutant-affected | 97 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5033043218 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I861853513 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.97582767 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |