Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transform and deep learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.22541/au.163947881.10573287/v1
Actual rainfall forecast is critical to the management and allocation of water resources. In recent years, deep learning has been proved to be superior to traditional forecasting methods when predicting rainfall time series with high temporal and spatial variability. In this study, the discrete wavelet transform (DWT) and two typical deep learning approaches, namely long-short term memory (LSTM) and dilated causal convolutional neural network (DCCNN), are integrated innovatively and the hybrid model (DWT-CLSTM-DCCNN) is used for monthly rainfall forecasting for the first time. Monthly rainfall time series of four major cities in China (Beijing, Tianjin, Chongqing and Guangzhou) are used as the dataset of DWT-CLSTM-DCCNN. Firstly, two methods of sample construction are used to train DWT-CLSTM-DCCNN and their effects on the model performance are analyzed. Then, LSTM and the dilated causal convolutional network (DCCNN) are established as the benchmark models, and their forecast accuracy is compared with that of DWT-CLSTM-DCCNN. From the results of the evaluation criteria such as mean absolute error (MAE), root mean squared error (RMSE) and Nash-Sutcliffe model efficiency coefficient (NSE) as well as the fitting curve for forecasted rainfall, it can be concluded that the DWT-CLSTM-DCCNN developed in this study outperforms the benchmark models in model accuracy, peak and mutational rainfall capturing ability. Compared with the previous studies, DWT-CLSTM-DCCNN is proven to be better peak capture and more suitable for long-term rainfall forecasting.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.22541/au.163947881.10573287/v1
- https://www.authorea.com/doi/pdf/10.22541/au.163947881.10573287
- OA Status
- gold
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200348022
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200348022Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22541/au.163947881.10573287/v1Digital Object Identifier
- Title
-
Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transform and deep learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-14Full publication date if available
- Authors
-
Xue‐yi You, Ming WeiList of authors in order
- Landing page
-
https://doi.org/10.22541/au.163947881.10573287/v1Publisher landing page
- PDF URL
-
https://www.authorea.com/doi/pdf/10.22541/au.163947881.10573287Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.authorea.com/doi/pdf/10.22541/au.163947881.10573287Direct OA link when available
- Concepts
-
Discrete wavelet transform, Benchmark (surveying), Mean squared error, Artificial neural network, Computer science, Convolutional neural network, Artificial intelligence, Deep learning, Series (stratigraphy), Rain gauge, Wavelet transform, Statistics, Wavelet, Mathematics, Geography, Geology, Radar, Paleontology, Telecommunications, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200348022 |
|---|---|
| doi | https://doi.org/10.22541/au.163947881.10573287/v1 |
| ids.doi | https://doi.org/10.22541/au.163947881.10573287/v1 |
| ids.openalex | https://openalex.org/W4200348022 |
| fwci | 0.0907499 |
| type | preprint |
| title | Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transform and deep learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T10330 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9690999984741211 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Hydrology and Watershed Management Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46286280 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7294068336486816 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[0].display_name | Discrete wavelet transform |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6256167888641357 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C139945424 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6196713447570801 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[2].display_name | Mean squared error |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5664148330688477 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5231717228889465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.506217896938324 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47950416803359985 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45750048756599426 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C143724316 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4500584304332733 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[8].display_name | Series (stratigraphy) |
| concepts[9].id | https://openalex.org/C120961793 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42949503660202026 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190052 |
| concepts[9].display_name | Rain gauge |
| concepts[10].id | https://openalex.org/C196216189 |
| concepts[10].level | 3 |
| concepts[10].score | 0.36312735080718994 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[10].display_name | Wavelet transform |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35667484998703003 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C47432892 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3436232805252075 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[12].display_name | Wavelet |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3094022274017334 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1128033995628357 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C127313418 |
| concepts[15].level | 0 |
| concepts[15].score | 0.07802212238311768 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[15].display_name | Geology |
| concepts[16].id | https://openalex.org/C554190296 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[16].display_name | Radar |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| concepts[19].id | https://openalex.org/C13280743 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[19].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/discrete-wavelet-transform |
| keywords[0].score | 0.7294068336486816 |
| keywords[0].display_name | Discrete wavelet transform |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.6256167888641357 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/mean-squared-error |
| keywords[2].score | 0.6196713447570801 |
| keywords[2].display_name | Mean squared error |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5664148330688477 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5231717228889465 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.506217896938324 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.47950416803359985 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.45750048756599426 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/series |
| keywords[8].score | 0.4500584304332733 |
| keywords[8].display_name | Series (stratigraphy) |
| keywords[9].id | https://openalex.org/keywords/rain-gauge |
| keywords[9].score | 0.42949503660202026 |
| keywords[9].display_name | Rain gauge |
| keywords[10].id | https://openalex.org/keywords/wavelet-transform |
| keywords[10].score | 0.36312735080718994 |
| keywords[10].display_name | Wavelet transform |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.35667484998703003 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/wavelet |
| keywords[12].score | 0.3436232805252075 |
| keywords[12].display_name | Wavelet |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.3094022274017334 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.1128033995628357 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/geology |
| keywords[15].score | 0.07802212238311768 |
| keywords[15].display_name | Geology |
| language | en |
| locations[0].id | doi:10.22541/au.163947881.10573287/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.163947881.10573287 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.22541/au.163947881.10573287/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074285148 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5966-5619 |
| authorships[0].author.display_name | Xue‐yi You |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[0].affiliations[0].raw_affiliation_string | Tianjin University |
| authorships[0].institutions[0].id | https://openalex.org/I162868743 |
| authorships[0].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tianjin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xueyi You |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tianjin University |
| authorships[1].author.id | https://openalex.org/A5110378390 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3392-3939 |
| authorships[1].author.display_name | Ming Wei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[1].affiliations[0].raw_affiliation_string | Tianjin University |
| authorships[1].institutions[0].id | https://openalex.org/I162868743 |
| authorships[1].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tianjin University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ming Wei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Tianjin University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.authorea.com/doi/pdf/10.22541/au.163947881.10573287 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transform and deep learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W4312417841, https://openalex.org/W4321369474, https://openalex.org/W2731899572, https://openalex.org/W3133861977, https://openalex.org/W2036450930, https://openalex.org/W3159837029, https://openalex.org/W3005344053, https://openalex.org/W2072994493, https://openalex.org/W2005653318, https://openalex.org/W1538204152 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22541/au.163947881.10573287/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.163947881.10573287 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.22541/au.163947881.10573287/v1 |
| primary_location.id | doi:10.22541/au.163947881.10573287/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.163947881.10573287 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.22541/au.163947881.10573287/v1 |
| publication_date | 2021-12-14 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.In | 13, 39 |
| abstract_inverted_index.as | 100, 136, 158, 174, 176 |
| abstract_inverted_index.be | 22, 185, 216 |
| abstract_inverted_index.in | 91, 191, 198 |
| abstract_inverted_index.is | 3, 73, 144, 213 |
| abstract_inverted_index.it | 183 |
| abstract_inverted_index.of | 10, 87, 103, 108, 148, 153 |
| abstract_inverted_index.on | 119 |
| abstract_inverted_index.to | 5, 21, 24, 113, 215 |
| abstract_inverted_index.and | 8, 36, 47, 58, 68, 96, 116, 127, 140, 168, 202, 220 |
| abstract_inverted_index.are | 65, 98, 111, 123, 134 |
| abstract_inverted_index.can | 184 |
| abstract_inverted_index.for | 75, 79, 180, 223 |
| abstract_inverted_index.has | 18 |
| abstract_inverted_index.the | 6, 42, 69, 80, 101, 120, 128, 137, 151, 154, 177, 188, 195, 209 |
| abstract_inverted_index.two | 48, 106 |
| abstract_inverted_index.From | 150 |
| abstract_inverted_index.LSTM | 126 |
| abstract_inverted_index.been | 19 |
| abstract_inverted_index.deep | 16, 50 |
| abstract_inverted_index.four | 88 |
| abstract_inverted_index.high | 34 |
| abstract_inverted_index.mean | 159, 164 |
| abstract_inverted_index.more | 221 |
| abstract_inverted_index.peak | 201, 218 |
| abstract_inverted_index.root | 163 |
| abstract_inverted_index.such | 157 |
| abstract_inverted_index.term | 55 |
| abstract_inverted_index.that | 147, 187 |
| abstract_inverted_index.this | 40, 192 |
| abstract_inverted_index.time | 31, 85 |
| abstract_inverted_index.used | 74, 99, 112 |
| abstract_inverted_index.well | 175 |
| abstract_inverted_index.when | 28 |
| abstract_inverted_index.with | 33, 146, 208 |
| abstract_inverted_index.(DWT) | 46 |
| abstract_inverted_index.(NSE) | 173 |
| abstract_inverted_index.China | 92 |
| abstract_inverted_index.Then, | 125 |
| abstract_inverted_index.curve | 179 |
| abstract_inverted_index.error | 161, 166 |
| abstract_inverted_index.first | 81 |
| abstract_inverted_index.major | 89 |
| abstract_inverted_index.model | 71, 121, 170, 199 |
| abstract_inverted_index.study | 193 |
| abstract_inverted_index.their | 117, 141 |
| abstract_inverted_index.time. | 82 |
| abstract_inverted_index.train | 114 |
| abstract_inverted_index.water | 11 |
| abstract_inverted_index.(LSTM) | 57 |
| abstract_inverted_index.(MAE), | 162 |
| abstract_inverted_index.(RMSE) | 167 |
| abstract_inverted_index.Actual | 0 |
| abstract_inverted_index.better | 217 |
| abstract_inverted_index.causal | 60, 130 |
| abstract_inverted_index.cities | 90 |
| abstract_inverted_index.hybrid | 70 |
| abstract_inverted_index.memory | 56 |
| abstract_inverted_index.models | 197 |
| abstract_inverted_index.namely | 53 |
| abstract_inverted_index.neural | 62 |
| abstract_inverted_index.proved | 20 |
| abstract_inverted_index.proven | 214 |
| abstract_inverted_index.recent | 14 |
| abstract_inverted_index.sample | 109 |
| abstract_inverted_index.series | 32, 86 |
| abstract_inverted_index.study, | 41 |
| abstract_inverted_index.years, | 15 |
| abstract_inverted_index.(DCCNN) | 133 |
| abstract_inverted_index.Monthly | 83 |
| abstract_inverted_index.capture | 219 |
| abstract_inverted_index.dataset | 102 |
| abstract_inverted_index.dilated | 59, 129 |
| abstract_inverted_index.effects | 118 |
| abstract_inverted_index.fitting | 178 |
| abstract_inverted_index.methods | 27, 107 |
| abstract_inverted_index.models, | 139 |
| abstract_inverted_index.monthly | 76 |
| abstract_inverted_index.network | 63, 132 |
| abstract_inverted_index.results | 152 |
| abstract_inverted_index.spatial | 37 |
| abstract_inverted_index.squared | 165 |
| abstract_inverted_index.typical | 49 |
| abstract_inverted_index.wavelet | 44 |
| abstract_inverted_index.(DCCNN), | 64 |
| abstract_inverted_index.Compared | 207 |
| abstract_inverted_index.Firstly, | 105 |
| abstract_inverted_index.Tianjin, | 94 |
| abstract_inverted_index.ability. | 206 |
| abstract_inverted_index.absolute | 160 |
| abstract_inverted_index.accuracy | 143 |
| abstract_inverted_index.compared | 145 |
| abstract_inverted_index.criteria | 156 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.discrete | 43 |
| abstract_inverted_index.forecast | 2, 142 |
| abstract_inverted_index.learning | 17, 51 |
| abstract_inverted_index.previous | 210 |
| abstract_inverted_index.rainfall | 1, 30, 77, 84, 204, 225 |
| abstract_inverted_index.studies, | 211 |
| abstract_inverted_index.suitable | 222 |
| abstract_inverted_index.superior | 23 |
| abstract_inverted_index.temporal | 35 |
| abstract_inverted_index.(Beijing, | 93 |
| abstract_inverted_index.Chongqing | 95 |
| abstract_inverted_index.accuracy, | 200 |
| abstract_inverted_index.analyzed. | 124 |
| abstract_inverted_index.benchmark | 138, 196 |
| abstract_inverted_index.capturing | 205 |
| abstract_inverted_index.concluded | 186 |
| abstract_inverted_index.developed | 190 |
| abstract_inverted_index.long-term | 224 |
| abstract_inverted_index.rainfall, | 182 |
| abstract_inverted_index.transform | 45 |
| abstract_inverted_index.Guangzhou) | 97 |
| abstract_inverted_index.allocation | 9 |
| abstract_inverted_index.efficiency | 171 |
| abstract_inverted_index.evaluation | 155 |
| abstract_inverted_index.forecasted | 181 |
| abstract_inverted_index.integrated | 66 |
| abstract_inverted_index.long-short | 54 |
| abstract_inverted_index.management | 7 |
| abstract_inverted_index.mutational | 203 |
| abstract_inverted_index.predicting | 29 |
| abstract_inverted_index.resources. | 12 |
| abstract_inverted_index.approaches, | 52 |
| abstract_inverted_index.coefficient | 172 |
| abstract_inverted_index.established | 135 |
| abstract_inverted_index.forecasting | 26, 78 |
| abstract_inverted_index.outperforms | 194 |
| abstract_inverted_index.performance | 122 |
| abstract_inverted_index.traditional | 25 |
| abstract_inverted_index.construction | 110 |
| abstract_inverted_index.forecasting. | 226 |
| abstract_inverted_index.innovatively | 67 |
| abstract_inverted_index.variability. | 38 |
| abstract_inverted_index.convolutional | 61, 131 |
| abstract_inverted_index.Nash-Sutcliffe | 169 |
| abstract_inverted_index.DWT-CLSTM-DCCNN | 115, 189, 212 |
| abstract_inverted_index.DWT-CLSTM-DCCNN. | 104, 149 |
| abstract_inverted_index.(DWT-CLSTM-DCCNN) | 72 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.42479763 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |