MORPH: PDE Foundation Models with Arbitrary Data Modality Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.21670
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.21670
- https://arxiv.org/pdf/2509.21670
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417086271
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417086271Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.21670Digital Object Identifier
- Title
-
MORPH: PDE Foundation Models with Arbitrary Data ModalityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-25Full publication date if available
- Authors
-
Mahindra Rautela, Siddharth Mansingh, Bradley C. Love, Ayan Biswas, Diane Oyen, Earl LawrenceList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.21670Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.21670Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.21670Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417086271 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.21670 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.21670 |
| ids.openalex | https://openalex.org/W4417086271 |
| fwci | |
| type | preprint |
| title | MORPH: PDE Foundation Models with Arbitrary Data Modality |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.21670 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.21670 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.21670 |
| locations[1].id | doi:10.48550/arxiv.2509.21670 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.21670 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062519467 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2678-9682 |
| authorships[0].author.display_name | Mahindra Rautela |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rautela, Mahindra Singh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5093775102 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Siddharth Mansingh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mansingh, Siddharth |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069362336 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7883-7076 |
| authorships[2].author.display_name | Bradley C. Love |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Love, Bradley C. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5062396178 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1485-3608 |
| authorships[3].author.display_name | Ayan Biswas |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Biswas, Ayan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5036303352 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1353-3688 |
| authorships[4].author.display_name | Diane Oyen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Oyen, Diane |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5114658563 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Earl Lawrence |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lawrence, Earl |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.21670 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | MORPH: PDE Foundation Models with Arbitrary Data Modality |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-07T09:55:27.540329 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.21670 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.21670 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.21670 |
| primary_location.id | pmh:oai:arXiv.org:2509.21670 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.21670 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.21670 |
| publication_date | 2025-09-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 17, 102, 113, 151, 168 |
| abstract_inverted_index.We | 0, 96 |
| abstract_inverted_index.at | 33, 186 |
| abstract_inverted_index.is | 14 |
| abstract_inverted_index.of | 28, 105, 115, 164 |
| abstract_inverted_index.on | 16, 101 |
| abstract_inverted_index.or | 139 |
| abstract_inverted_index.to | 58, 89, 112 |
| abstract_inverted_index.(i) | 48 |
| abstract_inverted_index.PDE | 107 |
| abstract_inverted_index.The | 45, 177 |
| abstract_inverted_index.and | 36, 42, 55, 67, 86, 109, 123, 143, 153, 161, 172, 181 |
| abstract_inverted_index.are | 183 |
| abstract_inverted_index.for | 8, 156 |
| abstract_inverted_index.the | 159 |
| abstract_inverted_index.(ii) | 62 |
| abstract_inverted_index.axes | 88 |
| abstract_inverted_index.both | 120 |
| abstract_inverted_index.data | 30 |
| abstract_inverted_index.from | 132, 158 |
| abstract_inverted_index.full | 80 |
| abstract_inverted_index.path | 169 |
| abstract_inverted_index.that | 22 |
| abstract_inverted_index.with | 39 |
| abstract_inverted_index.(iii) | 75 |
| abstract_inverted_index.MORPH | 13, 128, 137 |
| abstract_inverted_index.Using | 119 |
| abstract_inverted_index.along | 83 |
| abstract_inverted_index.axial | 76 |
| abstract_inverted_index.built | 15 |
| abstract_inverted_index.code, | 179 |
| abstract_inverted_index.local | 60 |
| abstract_inverted_index.mixed | 40 |
| abstract_inverted_index.model | 7, 99 |
| abstract_inverted_index.range | 114 |
| abstract_inverted_index.these | 148 |
| abstract_inverted_index.which | 51, 65, 78 |
| abstract_inverted_index.while | 93 |
| abstract_inverted_index.Across | 134 |
| abstract_inverted_index.MORPH, | 2 |
| abstract_inverted_index.burden | 92 |
| abstract_inverted_index.fields | 38 |
| abstract_inverted_index.models | 66, 130, 182 |
| abstract_inverted_index.nature | 163 |
| abstract_inverted_index.recent | 144 |
| abstract_inverted_index.reduce | 90 |
| abstract_inverted_index.scalar | 41, 54 |
| abstract_inverted_index.source | 178 |
| abstract_inverted_index.strong | 141 |
| abstract_inverted_index.tasks. | 118 |
| abstract_inverted_index.toward | 170 |
| abstract_inverted_index.vector | 43, 56 |
| abstract_inverted_index.vision | 19 |
| abstract_inverted_index.(LoRA), | 127 |
| abstract_inverted_index.(PDEs). | 12 |
| abstract_inverted_index.between | 71 |
| abstract_inverted_index.capture | 59 |
| abstract_inverted_index.diverse | 103 |
| abstract_inverted_index.fields, | 74 |
| abstract_inverted_index.handles | 24 |
| abstract_inverted_index.jointly | 52 |
| abstract_inverted_index.machine | 175 |
| abstract_inverted_index.matches | 138 |
| abstract_inverted_index.models. | 146 |
| abstract_inverted_index.partial | 9 |
| abstract_inverted_index.present | 150 |
| abstract_inverted_index.spatial | 85 |
| abstract_inverted_index.trained | 131 |
| abstract_inverted_index.varying | 29 |
| abstract_inverted_index.(1D--3D) | 32 |
| abstract_inverted_index.adapters | 126 |
| abstract_inverted_index.backbone | 21, 155 |
| abstract_inverted_index.channels | 57 |
| abstract_inverted_index.charting | 167 |
| abstract_inverted_index.combines | 47 |
| abstract_inverted_index.datasets | 27, 108 |
| abstract_inverted_index.evaluate | 110 |
| abstract_inverted_index.flexible | 152 |
| abstract_inverted_index.learning | 157 |
| abstract_inverted_index.low-rank | 125 |
| abstract_inverted_index.modality | 31 |
| abstract_inverted_index.multiple | 37, 98 |
| abstract_inverted_index.physical | 73 |
| abstract_inverted_index.powerful | 154 |
| abstract_inverted_index.pretrain | 97 |
| abstract_inverted_index.publicly | 184 |
| abstract_inverted_index.scalable | 171 |
| abstract_inverted_index.scratch. | 133 |
| abstract_inverted_index.temporal | 87 |
| abstract_inverted_index.transfer | 111 |
| abstract_inverted_index.variants | 100 |
| abstract_inverted_index.available | 185 |
| abstract_inverted_index.baselines | 142 |
| abstract_inverted_index.datasets, | 180 |
| abstract_inverted_index.different | 34, 72 |
| abstract_inverted_index.equations | 11 |
| abstract_inverted_index.extensive | 135 |
| abstract_inverted_index.factorize | 79 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.learning. | 176 |
| abstract_inverted_index.processes | 53 |
| abstract_inverted_index.retaining | 94 |
| abstract_inverted_index.surpasses | 140 |
| abstract_inverted_index.collection | 104 |
| abstract_inverted_index.downstream | 116 |
| abstract_inverted_index.foundation | 6 |
| abstract_inverted_index.full-model | 121 |
| abstract_inverted_index.individual | 84 |
| abstract_inverted_index.multimodal | 162 |
| abstract_inverted_index.prediction | 117 |
| abstract_inverted_index.propagates | 69 |
| abstract_inverted_index.scientific | 165, 174 |
| abstract_inverted_index.seamlessly | 23 |
| abstract_inverted_index.attentions, | 77 |
| abstract_inverted_index.components. | 44 |
| abstract_inverted_index.fine-tuning | 122 |
| abstract_inverted_index.information | 70 |
| abstract_inverted_index.inter-field | 63 |
| abstract_inverted_index.outperforms | 129 |
| abstract_inverted_index.selectively | 68 |
| abstract_inverted_index.transformer | 20 |
| abstract_inverted_index.architecture | 46 |
| abstract_inverted_index.capabilities | 149 |
| abstract_inverted_index.convolution, | 50 |
| abstract_inverted_index.differential | 10 |
| abstract_inverted_index.evaluations, | 136 |
| abstract_inverted_index.resolutions, | 35 |
| abstract_inverted_index.Collectively, | 147 |
| abstract_inverted_index.computational | 91 |
| abstract_inverted_index.convolutional | 18 |
| abstract_inverted_index.expressivity. | 95 |
| abstract_inverted_index.heterogeneous | 25, 106, 160 |
| abstract_inverted_index.interactions, | 61 |
| abstract_inverted_index.observations, | 166 |
| abstract_inverted_index.autoregressive | 5 |
| abstract_inverted_index.component-wise | 49 |
| abstract_inverted_index.data-efficient | 173 |
| abstract_inverted_index.self-attention | 82 |
| abstract_inverted_index.spatiotemporal | 26, 81 |
| abstract_inverted_index.cross-attention, | 64 |
| abstract_inverted_index.state-of-the-art | 145 |
| abstract_inverted_index.modality-agnostic, | 4 |
| abstract_inverted_index.parameter-efficient | 124 |
| abstract_inverted_index.https://github.com/lanl/MORPH. | 187 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |