MorphSeek: Fine-grained Latent Representation-Level Policy Optimization for Deformable Image Registration Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.17392
Deformable image registration (DIR) remains a fundamental yet challenging problem in medical image analysis, largely due to the prohibitively high-dimensional deformation space of dense displacement fields and the scarcity of voxel-level supervision. Existing reinforcement learning frameworks often project this space into coarse, low-dimensional representations, limiting their ability to capture spatially variant deformations. We propose MorphSeek, a fine-grained representation-level policy optimization paradigm that reformulates DIR as a spatially continuous optimization process in the latent feature space. MorphSeek introduces a stochastic Gaussian policy head atop the encoder to model a distribution over latent features, facilitating efficient exploration and coarse-to-fine refinement. The framework integrates unsupervised warm-up with weakly supervised fine-tuning through Group Relative Policy Optimization, where multi-trajectory sampling stabilizes training and improves label efficiency. Across three 3D registration benchmarks (OASIS brain MRI, LiTS liver CT, and Abdomen MR-CT), MorphSeek achieves consistent Dice improvements over competitive baselines while maintaining high label efficiency with minimal parameter cost and low step-level latency overhead. Beyond optimizer specifics, MorphSeek advances a representation-level policy learning paradigm that achieves spatially coherent and data-efficient deformation optimization, offering a principled, backbone-agnostic, and optimizer-agnostic solution for scalable visual alignment in high-dimensional settings.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.17392
- https://arxiv.org/pdf/2511.17392
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416598215
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416598215Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.17392Digital Object Identifier
- Title
-
MorphSeek: Fine-grained Latent Representation-Level Policy Optimization for Deformable Image RegistrationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-21Full publication date if available
- Authors
-
Zhang, Runxun, Liu, Yizhou, Dongrui Li, Xu Bo, Wei JingweiList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.17392Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.17392Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.17392Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416598215 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.17392 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.17392 |
| ids.openalex | https://openalex.org/W4416598215 |
| fwci | 0.0 |
| type | preprint |
| title | MorphSeek: Fine-grained Latent Representation-Level Policy Optimization for Deformable Image Registration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.17392 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.17392 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.17392 |
| locations[1].id | doi:10.48550/arxiv.2511.17392 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.17392 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhang, Runxun |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Runxun |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2357794936 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Liu, Yizhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Yizhou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2320589019 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8196-2962 |
| authorships[2].author.display_name | Dongrui Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dongrui, Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A1937328933 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0730-7585 |
| authorships[3].author.display_name | Xu Bo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | XU, Bo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A2359646776 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wei Jingwei |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wei, Jingwei |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.17392 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-25T00:00:00 |
| display_name | MorphSeek: Fine-grained Latent Representation-Level Policy Optimization for Deformable Image Registration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T18:17:02.295780 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.17392 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.17392 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.17392 |
| primary_location.id | pmh:oai:arXiv.org:2511.17392 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.17392 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.17392 |
| publication_date | 2025-11-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 55, 65, 77, 87, 162, 176 |
| abstract_inverted_index.3D | 123 |
| abstract_inverted_index.We | 52 |
| abstract_inverted_index.as | 64 |
| abstract_inverted_index.in | 10, 70, 186 |
| abstract_inverted_index.of | 22, 29 |
| abstract_inverted_index.to | 16, 47, 85 |
| abstract_inverted_index.CT, | 131 |
| abstract_inverted_index.DIR | 63 |
| abstract_inverted_index.The | 98 |
| abstract_inverted_index.and | 26, 95, 117, 132, 152, 171, 179 |
| abstract_inverted_index.due | 15 |
| abstract_inverted_index.for | 182 |
| abstract_inverted_index.low | 153 |
| abstract_inverted_index.the | 17, 27, 71, 83 |
| abstract_inverted_index.yet | 7 |
| abstract_inverted_index.Dice | 138 |
| abstract_inverted_index.LiTS | 129 |
| abstract_inverted_index.MRI, | 128 |
| abstract_inverted_index.atop | 82 |
| abstract_inverted_index.cost | 151 |
| abstract_inverted_index.head | 81 |
| abstract_inverted_index.high | 145 |
| abstract_inverted_index.into | 40 |
| abstract_inverted_index.over | 89, 140 |
| abstract_inverted_index.that | 61, 167 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.with | 103, 148 |
| abstract_inverted_index.(DIR) | 3 |
| abstract_inverted_index.Group | 108 |
| abstract_inverted_index.brain | 127 |
| abstract_inverted_index.dense | 23 |
| abstract_inverted_index.image | 1, 12 |
| abstract_inverted_index.label | 119, 146 |
| abstract_inverted_index.liver | 130 |
| abstract_inverted_index.model | 86 |
| abstract_inverted_index.often | 36 |
| abstract_inverted_index.space | 21, 39 |
| abstract_inverted_index.their | 45 |
| abstract_inverted_index.three | 122 |
| abstract_inverted_index.where | 112 |
| abstract_inverted_index.while | 143 |
| abstract_inverted_index.(OASIS | 126 |
| abstract_inverted_index.Across | 121 |
| abstract_inverted_index.Beyond | 157 |
| abstract_inverted_index.Policy | 110 |
| abstract_inverted_index.fields | 25 |
| abstract_inverted_index.latent | 72, 90 |
| abstract_inverted_index.policy | 58, 80, 164 |
| abstract_inverted_index.space. | 74 |
| abstract_inverted_index.visual | 184 |
| abstract_inverted_index.weakly | 104 |
| abstract_inverted_index.Abdomen | 133 |
| abstract_inverted_index.MR-CT), | 134 |
| abstract_inverted_index.ability | 46 |
| abstract_inverted_index.capture | 48 |
| abstract_inverted_index.coarse, | 41 |
| abstract_inverted_index.encoder | 84 |
| abstract_inverted_index.feature | 73 |
| abstract_inverted_index.largely | 14 |
| abstract_inverted_index.latency | 155 |
| abstract_inverted_index.medical | 11 |
| abstract_inverted_index.minimal | 149 |
| abstract_inverted_index.problem | 9 |
| abstract_inverted_index.process | 69 |
| abstract_inverted_index.project | 37 |
| abstract_inverted_index.propose | 53 |
| abstract_inverted_index.remains | 4 |
| abstract_inverted_index.through | 107 |
| abstract_inverted_index.variant | 50 |
| abstract_inverted_index.warm-up | 102 |
| abstract_inverted_index.Existing | 32 |
| abstract_inverted_index.Gaussian | 79 |
| abstract_inverted_index.Relative | 109 |
| abstract_inverted_index.achieves | 136, 168 |
| abstract_inverted_index.advances | 161 |
| abstract_inverted_index.coherent | 170 |
| abstract_inverted_index.improves | 118 |
| abstract_inverted_index.learning | 34, 165 |
| abstract_inverted_index.limiting | 44 |
| abstract_inverted_index.offering | 175 |
| abstract_inverted_index.paradigm | 60, 166 |
| abstract_inverted_index.sampling | 114 |
| abstract_inverted_index.scalable | 183 |
| abstract_inverted_index.scarcity | 28 |
| abstract_inverted_index.solution | 181 |
| abstract_inverted_index.training | 116 |
| abstract_inverted_index.MorphSeek | 75, 135, 160 |
| abstract_inverted_index.alignment | 185 |
| abstract_inverted_index.analysis, | 13 |
| abstract_inverted_index.baselines | 142 |
| abstract_inverted_index.efficient | 93 |
| abstract_inverted_index.features, | 91 |
| abstract_inverted_index.framework | 99 |
| abstract_inverted_index.optimizer | 158 |
| abstract_inverted_index.overhead. | 156 |
| abstract_inverted_index.parameter | 150 |
| abstract_inverted_index.settings. | 188 |
| abstract_inverted_index.spatially | 49, 66, 169 |
| abstract_inverted_index.Deformable | 0 |
| abstract_inverted_index.MorphSeek, | 54 |
| abstract_inverted_index.benchmarks | 125 |
| abstract_inverted_index.consistent | 137 |
| abstract_inverted_index.continuous | 67 |
| abstract_inverted_index.efficiency | 147 |
| abstract_inverted_index.frameworks | 35 |
| abstract_inverted_index.integrates | 100 |
| abstract_inverted_index.introduces | 76 |
| abstract_inverted_index.specifics, | 159 |
| abstract_inverted_index.stabilizes | 115 |
| abstract_inverted_index.step-level | 154 |
| abstract_inverted_index.stochastic | 78 |
| abstract_inverted_index.supervised | 105 |
| abstract_inverted_index.challenging | 8 |
| abstract_inverted_index.competitive | 141 |
| abstract_inverted_index.deformation | 20, 173 |
| abstract_inverted_index.efficiency. | 120 |
| abstract_inverted_index.exploration | 94 |
| abstract_inverted_index.fine-tuning | 106 |
| abstract_inverted_index.fundamental | 6 |
| abstract_inverted_index.maintaining | 144 |
| abstract_inverted_index.principled, | 177 |
| abstract_inverted_index.refinement. | 97 |
| abstract_inverted_index.voxel-level | 30 |
| abstract_inverted_index.displacement | 24 |
| abstract_inverted_index.distribution | 88 |
| abstract_inverted_index.facilitating | 92 |
| abstract_inverted_index.fine-grained | 56 |
| abstract_inverted_index.improvements | 139 |
| abstract_inverted_index.optimization | 59, 68 |
| abstract_inverted_index.reformulates | 62 |
| abstract_inverted_index.registration | 2, 124 |
| abstract_inverted_index.supervision. | 31 |
| abstract_inverted_index.unsupervised | 101 |
| abstract_inverted_index.Optimization, | 111 |
| abstract_inverted_index.deformations. | 51 |
| abstract_inverted_index.optimization, | 174 |
| abstract_inverted_index.prohibitively | 18 |
| abstract_inverted_index.reinforcement | 33 |
| abstract_inverted_index.coarse-to-fine | 96 |
| abstract_inverted_index.data-efficient | 172 |
| abstract_inverted_index.low-dimensional | 42 |
| abstract_inverted_index.high-dimensional | 19, 187 |
| abstract_inverted_index.multi-trajectory | 113 |
| abstract_inverted_index.representations, | 43 |
| abstract_inverted_index.backbone-agnostic, | 178 |
| abstract_inverted_index.optimizer-agnostic | 180 |
| abstract_inverted_index.representation-level | 57, 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |