Motor imagery classification in Brain computer interface (BCI) based on EEG signal by using machine learning technique Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.11591/eei.v8i1.1402
This paper focuses on classification of motor imagery in Brain Computer Interface (BCI) by using classifiers from machine learning technique. The BCI system consists of two main steps which are feature extraction and classification. The Fast Fourier Transform (FFT) features is extracted from the electroencephalography (EEG) signals to transform the signals into frequency domain. Due to the high dimensionality of data resulting from the feature extraction stage, the Linear Discriminant Analysis (LDA) is used to minimize the number of dimension by finding the feature subspace that optimizes class separability. Five classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes, Decision Tree and Logistic Regression are used in the study. The performance was tested by using Dataset 1 from BCI Competition IV which consists of imaginary hand and foot movement EEG data. As a result, SVM, Logistic Regression and Naïve Bayes classifier achieved the highest accuracy with 89.09% in AUC measurement.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/eei.v8i1.1402
- http://beei.org/index.php/EEI/article/download/1402/1120
- OA Status
- diamond
- Cited By
- 65
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2951758041
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2951758041Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/eei.v8i1.1402Digital Object Identifier
- Title
-
Motor imagery classification in Brain computer interface (BCI) based on EEG signal by using machine learning techniqueWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-01Full publication date if available
- Authors
-
N. E. Md Isa, Arnon Amir, M. Z. Ilyas, M. S. RazalliList of authors in order
- Landing page
-
https://doi.org/10.11591/eei.v8i1.1402Publisher landing page
- PDF URL
-
https://beei.org/index.php/EEI/article/download/1402/1120Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://beei.org/index.php/EEI/article/download/1402/1120Direct OA link when available
- Concepts
-
Brain–computer interface, Motor imagery, Artificial intelligence, Support vector machine, Pattern recognition (psychology), Naive Bayes classifier, Linear discriminant analysis, Feature extraction, Computer science, Electroencephalography, Dimensionality reduction, Quadratic classifier, Machine learning, Speech recognition, Psychiatry, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
65Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 9, 2023: 13, 2022: 16, 2021: 11Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2951758041 |
|---|---|
| doi | https://doi.org/10.11591/eei.v8i1.1402 |
| ids.doi | https://doi.org/10.11591/eei.v8i1.1402 |
| ids.mag | 2951758041 |
| ids.openalex | https://openalex.org/W2951758041 |
| fwci | 5.35655483 |
| type | article |
| title | Motor imagery classification in Brain computer interface (BCI) based on EEG signal by using machine learning technique |
| biblio.issue | 1 |
| biblio.volume | 8 |
| biblio.last_page | 275 |
| biblio.first_page | 269 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.982200026512146 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T11601 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9225000143051147 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2804 |
| topics[2].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[2].display_name | Neuroscience and Neural Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C173201364 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8894002437591553 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[0].display_name | Brain–computer interface |
| concepts[1].id | https://openalex.org/C54808283 |
| concepts[1].level | 4 |
| concepts[1].score | 0.8207338452339172 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6918191 |
| concepts[1].display_name | Motor imagery |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7747223377227783 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C12267149 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7312456369400024 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[3].display_name | Support vector machine |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.72353196144104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C52001869 |
| concepts[5].level | 3 |
| concepts[5].score | 0.7225000858306885 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[5].display_name | Naive Bayes classifier |
| concepts[6].id | https://openalex.org/C69738355 |
| concepts[6].level | 2 |
| concepts[6].score | 0.7223724722862244 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[6].display_name | Linear discriminant analysis |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.6644233465194702 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.6316905617713928 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C522805319 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5021064281463623 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[9].display_name | Electroencephalography |
| concepts[10].id | https://openalex.org/C70518039 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4689922630786896 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[10].display_name | Dimensionality reduction |
| concepts[11].id | https://openalex.org/C52620605 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4252508878707886 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7268357 |
| concepts[11].display_name | Quadratic classifier |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3499491810798645 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C28490314 |
| concepts[13].level | 1 |
| concepts[13].score | 0.34122055768966675 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[13].display_name | Speech recognition |
| concepts[14].id | https://openalex.org/C118552586 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[14].display_name | Psychiatry |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[0].score | 0.8894002437591553 |
| keywords[0].display_name | Brain–computer interface |
| keywords[1].id | https://openalex.org/keywords/motor-imagery |
| keywords[1].score | 0.8207338452339172 |
| keywords[1].display_name | Motor imagery |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7747223377227783 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/support-vector-machine |
| keywords[3].score | 0.7312456369400024 |
| keywords[3].display_name | Support vector machine |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.72353196144104 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[5].score | 0.7225000858306885 |
| keywords[5].display_name | Naive Bayes classifier |
| keywords[6].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[6].score | 0.7223724722862244 |
| keywords[6].display_name | Linear discriminant analysis |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.6644233465194702 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.6316905617713928 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/electroencephalography |
| keywords[9].score | 0.5021064281463623 |
| keywords[9].display_name | Electroencephalography |
| keywords[10].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[10].score | 0.4689922630786896 |
| keywords[10].display_name | Dimensionality reduction |
| keywords[11].id | https://openalex.org/keywords/quadratic-classifier |
| keywords[11].score | 0.4252508878707886 |
| keywords[11].display_name | Quadratic classifier |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3499491810798645 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/speech-recognition |
| keywords[13].score | 0.34122055768966675 |
| keywords[13].display_name | Speech recognition |
| language | en |
| locations[0].id | doi:10.11591/eei.v8i1.1402 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2765016208 |
| locations[0].source.issn | 2302-9285 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2302-9285 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Bulletin of Electrical Engineering and Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | |
| locations[0].pdf_url | http://beei.org/index.php/EEI/article/download/1402/1120 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bulletin of Electrical Engineering and Informatics |
| locations[0].landing_page_url | https://doi.org/10.11591/eei.v8i1.1402 |
| locations[1].id | pmh:oai:zenodo.org:4263592 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Bulletin of Electrical Engineering and Informatics, 8(1), 269-275, (2019-03-01) |
| locations[1].landing_page_url | https://zenodo.org/record/4263592 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103855167 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | N. E. Md Isa |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I65079550 |
| authorships[0].affiliations[0].raw_affiliation_string | Universiti Malaysia Perlis (UniMAP) |
| authorships[0].institutions[0].id | https://openalex.org/I65079550 |
| authorships[0].institutions[0].ror | https://ror.org/00xmkb790 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I65079550 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Universiti Malaysia Perlis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | N. E. Md Isa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Universiti Malaysia Perlis (UniMAP) |
| authorships[1].author.id | https://openalex.org/A5101757788 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-6814-165X |
| authorships[1].author.display_name | Arnon Amir |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I65079550 |
| authorships[1].affiliations[0].raw_affiliation_string | Universiti Malaysia Perlis (UniMAP) |
| authorships[1].institutions[0].id | https://openalex.org/I65079550 |
| authorships[1].institutions[0].ror | https://ror.org/00xmkb790 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I65079550 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Universiti Malaysia Perlis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | A. Amir |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universiti Malaysia Perlis (UniMAP) |
| authorships[2].author.id | https://openalex.org/A5112652841 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | M. Z. Ilyas |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I65079550 |
| authorships[2].affiliations[0].raw_affiliation_string | Universiti Malaysia Perlis (UniMAP) |
| authorships[2].institutions[0].id | https://openalex.org/I65079550 |
| authorships[2].institutions[0].ror | https://ror.org/00xmkb790 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I65079550 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Universiti Malaysia Perlis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | M. Z. Ilyas |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universiti Malaysia Perlis (UniMAP) |
| authorships[3].author.id | https://openalex.org/A5107869590 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | M. S. Razalli |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I65079550 |
| authorships[3].affiliations[0].raw_affiliation_string | Universiti Malaysia Perlis (UniMAP) |
| authorships[3].institutions[0].id | https://openalex.org/I65079550 |
| authorships[3].institutions[0].ror | https://ror.org/00xmkb790 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I65079550 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Universiti Malaysia Perlis |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | M. S. Razalli |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Universiti Malaysia Perlis (UniMAP) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://beei.org/index.php/EEI/article/download/1402/1120 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Motor imagery classification in Brain computer interface (BCI) based on EEG signal by using machine learning technique |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W1977940006, https://openalex.org/W2947925238, https://openalex.org/W2887556756, https://openalex.org/W195417223, https://openalex.org/W2951110009, https://openalex.org/W1513407214, https://openalex.org/W1984377984, https://openalex.org/W2510077457, https://openalex.org/W1961545574, https://openalex.org/W3045772920 |
| cited_by_count | 65 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 16 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 11 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 10 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 2 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.11591/eei.v8i1.1402 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2765016208 |
| best_oa_location.source.issn | 2302-9285 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2302-9285 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Bulletin of Electrical Engineering and Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://beei.org/index.php/EEI/article/download/1402/1120 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bulletin of Electrical Engineering and Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.11591/eei.v8i1.1402 |
| primary_location.id | doi:10.11591/eei.v8i1.1402 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2765016208 |
| primary_location.source.issn | 2302-9285 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2302-9285 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Bulletin of Electrical Engineering and Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | |
| primary_location.pdf_url | http://beei.org/index.php/EEI/article/download/1402/1120 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bulletin of Electrical Engineering and Informatics |
| primary_location.landing_page_url | https://doi.org/10.11591/eei.v8i1.1402 |
| publication_date | 2019-03-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2291176881, https://openalex.org/W2400448630, https://openalex.org/W1486208236, https://openalex.org/W2566830364, https://openalex.org/W6600718291, https://openalex.org/W1597963452, https://openalex.org/W2773589554, https://openalex.org/W6682129855, https://openalex.org/W2790114788, https://openalex.org/W2778861494, https://openalex.org/W2047316757, https://openalex.org/W2521878393, https://openalex.org/W2580305911, https://openalex.org/W2941340992, https://openalex.org/W2528257759, https://openalex.org/W2128404967, https://openalex.org/W2519854288, https://openalex.org/W1631373552, https://openalex.org/W2518353564, https://openalex.org/W2586608861, https://openalex.org/W2486321123, https://openalex.org/W2562618250, https://openalex.org/W207309682, https://openalex.org/W2237984721, https://openalex.org/W4285719527, https://openalex.org/W2289208053, https://openalex.org/W17671265, https://openalex.org/W2151591509, https://openalex.org/W2119163516 |
| referenced_works_count | 29 |
| abstract_inverted_index.1 | 117 |
| abstract_inverted_index.a | 133 |
| abstract_inverted_index.As | 132 |
| abstract_inverted_index.IV | 121 |
| abstract_inverted_index.by | 13, 80, 114 |
| abstract_inverted_index.in | 8, 107, 148 |
| abstract_inverted_index.is | 40, 72 |
| abstract_inverted_index.of | 5, 24, 59, 78, 124 |
| abstract_inverted_index.on | 3 |
| abstract_inverted_index.to | 47, 55, 74 |
| abstract_inverted_index.AUC | 149 |
| abstract_inverted_index.BCI | 21, 119 |
| abstract_inverted_index.Due | 54 |
| abstract_inverted_index.EEG | 130 |
| abstract_inverted_index.The | 20, 34, 110 |
| abstract_inverted_index.and | 32, 102, 127, 138 |
| abstract_inverted_index.are | 29, 105 |
| abstract_inverted_index.the | 43, 49, 56, 63, 67, 76, 82, 108, 143 |
| abstract_inverted_index.two | 25 |
| abstract_inverted_index.was | 112 |
| abstract_inverted_index.Fast | 35 |
| abstract_inverted_index.Five | 89 |
| abstract_inverted_index.SVM, | 135 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.Tree | 101 |
| abstract_inverted_index.data | 60 |
| abstract_inverted_index.foot | 128 |
| abstract_inverted_index.from | 16, 42, 62, 118 |
| abstract_inverted_index.hand | 126 |
| abstract_inverted_index.high | 57 |
| abstract_inverted_index.into | 51 |
| abstract_inverted_index.main | 26 |
| abstract_inverted_index.that | 85 |
| abstract_inverted_index.used | 73, 106 |
| abstract_inverted_index.with | 146 |
| abstract_inverted_index.(BCI) | 12 |
| abstract_inverted_index.(EEG) | 45 |
| abstract_inverted_index.(FFT) | 38 |
| abstract_inverted_index.(LDA) | 71 |
| abstract_inverted_index.Bayes | 140 |
| abstract_inverted_index.Brain | 9 |
| abstract_inverted_index.class | 87 |
| abstract_inverted_index.data. | 131 |
| abstract_inverted_index.motor | 6 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.steps | 27 |
| abstract_inverted_index.using | 14, 115 |
| abstract_inverted_index.which | 28, 122 |
| abstract_inverted_index.(KNN), | 97 |
| abstract_inverted_index.(SVM), | 94 |
| abstract_inverted_index.89.09% | 147 |
| abstract_inverted_index.Bayes, | 99 |
| abstract_inverted_index.Linear | 68 |
| abstract_inverted_index.Naïve | 98, 139 |
| abstract_inverted_index.Vector | 92 |
| abstract_inverted_index.number | 77 |
| abstract_inverted_index.stage, | 66 |
| abstract_inverted_index.study. | 109 |
| abstract_inverted_index.system | 22 |
| abstract_inverted_index.tested | 113 |
| abstract_inverted_index.Dataset | 116 |
| abstract_inverted_index.Fourier | 36 |
| abstract_inverted_index.Machine | 93 |
| abstract_inverted_index.Support | 91 |
| abstract_inverted_index.domain. | 53 |
| abstract_inverted_index.feature | 30, 64, 83 |
| abstract_inverted_index.finding | 81 |
| abstract_inverted_index.focuses | 2 |
| abstract_inverted_index.highest | 144 |
| abstract_inverted_index.imagery | 7 |
| abstract_inverted_index.machine | 17 |
| abstract_inverted_index.result, | 134 |
| abstract_inverted_index.signals | 46, 50 |
| abstract_inverted_index.Analysis | 70 |
| abstract_inverted_index.Computer | 10 |
| abstract_inverted_index.Decision | 100 |
| abstract_inverted_index.Logistic | 103, 136 |
| abstract_inverted_index.accuracy | 145 |
| abstract_inverted_index.achieved | 142 |
| abstract_inverted_index.consists | 23, 123 |
| abstract_inverted_index.features | 39 |
| abstract_inverted_index.learning | 18 |
| abstract_inverted_index.minimize | 75 |
| abstract_inverted_index.movement | 129 |
| abstract_inverted_index.subspace | 84 |
| abstract_inverted_index.Interface | 11 |
| abstract_inverted_index.K-Nearest | 95 |
| abstract_inverted_index.Neighbors | 96 |
| abstract_inverted_index.Transform | 37 |
| abstract_inverted_index.dimension | 79 |
| abstract_inverted_index.extracted | 41 |
| abstract_inverted_index.frequency | 52 |
| abstract_inverted_index.imaginary | 125 |
| abstract_inverted_index.optimizes | 86 |
| abstract_inverted_index.resulting | 61 |
| abstract_inverted_index.transform | 48 |
| abstract_inverted_index.Regression | 104, 137 |
| abstract_inverted_index.classifier | 141 |
| abstract_inverted_index.extraction | 31, 65 |
| abstract_inverted_index.technique. | 19 |
| abstract_inverted_index.Competition | 120 |
| abstract_inverted_index.classifiers | 15 |
| abstract_inverted_index.performance | 111 |
| abstract_inverted_index.Discriminant | 69 |
| abstract_inverted_index.classifiers: | 90 |
| abstract_inverted_index.measurement. | 150 |
| abstract_inverted_index.separability. | 88 |
| abstract_inverted_index.classification | 4 |
| abstract_inverted_index.dimensionality | 58 |
| abstract_inverted_index.classification. | 33 |
| abstract_inverted_index.electroencephalography | 44 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.96049069 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |